Strange IndiaStrange India


  • Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    Article 
    ADS 

    Google Scholar 

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hogg, A. E., Gilbert, L., Shepherd, A., Muir, A. S. & McMillan, M. Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017. Adv. Space Res. 68, 724–731 (2021).

    Article 
    ADS 

    Google Scholar 

  • Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matsuoka, K. et al. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci. Rev. 150, 724–745 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The IMBIE team Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article 
    ADS 

    Google Scholar 

  • Glavovic, B. C. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds H.-O. Pörtner et al.) 2163–2194 (Cambridge Univ. Press, 2022).

  • Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Adusumilli, S. et al. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophys. Res. Lett. 45, 4086–4095 (2018).

    Article 
    ADS 

    Google Scholar 

  • Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts, J. et al. Ocean forced variability of Totten Glacier mass loss. Geol. Soc. Spec. Publ. 461, 175–186 (2018).

    Article 
    ADS 

    Google Scholar 

  • Favier, L., Pattyn, F., Berger, S. & Drews, R. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica. Cryosphere 10, 2623–2635 (2016).

    Article 
    ADS 

    Google Scholar 

  • Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    Article 
    ADS 

    Google Scholar 

  • Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

    Article 
    ADS 

    Google Scholar 

  • Larour, E., Rignot, E. & Aubry, D. Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophys. Res. Lett. 31, L16404 (2004).

    Article 
    ADS 

    Google Scholar 

  • Rignot, E. & MacAyeal, D. R. Ice-shelf dynamics near the front of the Filchner—Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. J. Glaciol. 44, 405–418 (1998).

    Article 
    ADS 

    Google Scholar 

  • Holland, P. R., Bevan, S. L. & Luckman, A. J. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophys. Res. Lett. 50, e2023GL103088 (2023).

    Article 
    ADS 

    Google Scholar 

  • Bindschadler, R. et al. The Landsat Image Mosaic of Antarctica. Remote Sens. Environ. 112, 4214–4226 (2008).

    Article 
    ADS 

    Google Scholar 

  • Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

    Article 
    ADS 

    Google Scholar 

  • Mitcham, T., Gudmundsson, G. H. & Bamber, J. L. The instantaneous impact of calving and thinning on the Larsen C Ice Shelf. Cryosphere 16, 883–901 (2022).

    Article 
    ADS 

    Google Scholar 

  • Padman, L. et al. Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. J. Geophys. Res. 117, C01010 (2012).

    ADS 

    Google Scholar 

  • Cochran, J. R., Jacobs, S. S., Tinto, K. J. & Bell, R. E. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability. Cryosphere 8, 877–889 (2014).

    Article 
    ADS 

    Google Scholar 

  • Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

    Article 
    ADS 

    Google Scholar 

  • Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B. & Muto, A. Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophys. Res. Lett. 43, 5741–5749 (2016).

    Article 
    ADS 

    Google Scholar 

  • Oelerich, R., Heywood, K. J., Damerell, G. M. & Thompson, A. F. Wind-induced variability of warm water on the southern Bellingshausen Sea continental shelf. J. Geophys. Res. Oceans 127, e2022JC018636 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Graham, A. G. C. et al. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miles, B. W. J. et al. High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometry. Sci. Rep. 12, 10968 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, A. J., Hulbe, C. L. & Lee, C.-K. Ice stream slowdown will drive long-term thinning of the Ross Ice Shelf, with or without ocean warming. Geophys. Res. Lett. 45, 201–206 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bindschadler, R. & Vornberger, P. Changes in the West Antarctic Ice Sheet since 1963 from declassified satellite photography. Science 279, 689–692 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Miles, B. W. J. et al. Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds. Cryosphere 17, 445–456 (2023).

    Article 
    ADS 

    Google Scholar 

  • Wearing, M. G. & Kingslake, J. Holocene formation of Henry Ice Rise, West Antarctica, inferred from ice-penetrating radar. J. Geophys. Res. Earth Surf. 124, 2224–2240 (2019).

    Article 
    ADS 

    Google Scholar 

  • Eisermann, H., Eagles, G., Ruppel, A. S., Läufer, A. & Jokat, W. Bathymetric control on Borchgrevink and Roi Baudouin ice shelves in East Antarctica. J. Geophys. Res. Earth Surf. 126, e2021JF006342 (2021).

    Article 
    ADS 

    Google Scholar 

  • Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The Reference Elevation Model of Antarctica. Cryosphere 13, 665–674 (2019).

    Article 
    ADS 

    Google Scholar 

  • Henry, A. C. J., Drews, R., Schannwell, C. & Višnjević, V. Hysteretic evolution of ice rises and ice rumples in response to variations in sea level. Cryosphere 16, 3889–3905 (2022).

    Article 
    ADS 

    Google Scholar 

  • Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Herraiz-Borreguero, L. & Naveira Garabato, A. C. Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet. Nat. Clim. Change 12, 728–734 (2022).

    Article 
    ADS 

    Google Scholar 

  • Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flexas, M. M., Thompson, A. F., Schodlok, M. P., Zhang, H. & Speer, K. Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica. Sci. Adv. 8, eabj9134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gudmundsson, G. H., Barnes, J. M., Goldberg, D. N. & Morlighem, M. Limited impact of Thwaites Ice Shelf on future ice loss from Antarctica. Geophys. Res. Lett. 50, e2023GL102880 (2023).

    Article 
    ADS 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar 

  • Moholdt, G. & Matsuoka, K. Inventory of Antarctic ice rises and rumples (version 1). Norwegian Polar Institute https://doi.org/10.21334/npolar.2015.9174e644 (2015).

  • Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/IKBWW4RYHF1Q (2016).

  • Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).

    Article 
    ADS 

    Google Scholar 

  • Miles, B. & Bingham, R. Landsat mosaics of Antarctic Ice Shelves from 1973 and 1989, 1973-1989. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/3810 (2023).

  • Miles, B. & Bingham, R. Landsat mosaics of Antarctic Ice Shelves from 2022 [dataset]. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/7531 (2023).

  • Miles, B. & Bingham, R. Antarctic ice shelf pinning point change classification 1973-2022. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/7583 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *