Strange IndiaStrange India


  • Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18 instability. Science 368, 889–892 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Swann, W. C., Baumann, E., Giorgetta, F. R. & Newbury, N. R. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator. Opt. Express 19, 24387–24395 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv. 8, eabp9006 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kelleher, M. L. et al. Compact, portable, thermal-noise-limited optical cavity with low acceleration sensitivity. Opt. Express 31, 11954–11965 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Ji, Q.-X. et al. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica 10, 279–285 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Matei, D. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalubovilage, M., Endo, M. & Schibli, T. R. X-band photonic microwaves with phase noise below −180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, M. J. and Ye, J. in Optical Coatings and Thermal Noise in Precision Measurement (eds Harry, G. M. et al.) 237–258 (Cambridge Univ. Press, 2012).

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, N. et al. Micro-fabricated mirrors with finesse exceeding one million. Optica 9, 965–970 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McLemore, C. A. et al. Miniaturizing ultrastable electromagnetic oscillators: sub-1014 frequency instability from a centimeter-scale Fabry-Perot cavity. Phys. Rev. Appl. 18, 054054 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Low noise microwave generation with an air-gap optical reference cavity. APL Photonics 9, 010806 (2024).

  • Drever, R. W. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    Article 
    ADS 

    Google Scholar 

  • Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kwon, D., Jeong, D., Jeon, I., Lee, H. & Kim, J. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nat. Commun. 13, 381 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zang, J. et al. Reduction of amplitude-to-phase conversion in charge-compensated modified unitraveling carrier photodiodes. J. Lightwave Tech. 36, 5218–5223 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, H. & Abraham, N. Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator. IEEE J. Quantum Electron. 25, 1782–1793 (1989).

    Article 
    ADS 

    Google Scholar 

  • Endo, M. & Schibli, T. R. Residual phase noise suppression for Pound–Drever–Hall cavity stabilization with an electro-optic modulator. OSA Continuum 1, 116–123 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ji, Q. et al. Integrated microcomb with broadband tunable normal and anomalous dispersion. In Optica Nonlinear Optics Topical Meeting 2023, Technical Digest Series Tu1A-2 (Optica Publishing Group, 2023).

  • Pavlov, N. et al. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser diodes. Nat. Photon. 12, 694–698 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, Y., Sun, K., Shen, Y., Beling, A. & Campbell, J. C. Photonic generation of pulsed microwave signals in the x-, ku-and k-band. Opt. Express 28, 28563–28572 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, X. et al. Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond. Optica 1, 429–435 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Weng, W. et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett. 122, 013902 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Photonic microwave generation in the x-and k-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).

  • Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 14869 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Q.-F. et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9, 561–564 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature https://doi.org/10.1038/s41586-024-07136-2 (2024).

  • OEWaves. OE3700 Hi-Q X-band OEO. OEWaves https://www.oewaves.com/oe3700 (2020).

  • Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at x-ka bands. Optica 10, 33–34 (2023).

    Article 
    ADS 

    Google Scholar 

  • Quantx Labs. Ultra-low phase noise oscillators. The purest frequency source. X-LNO. Ultra-low-noise microwave oscillator. Quantx Labs https://www.quantxlabs.com/capabilities/product-development/ultra-low-phase-noise-oscillators/ (2022).

  • Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, W. et al. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 27, 3642–3663 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Idjadi, M. H. & Aflatouni, F. Integrated Pound–Drever–Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H. et al. A novel approach to interface high-Q Fabry–Perot resonators with photonic circuits. APL Photon. 8, 116105 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fortier, T. et al. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photon. Rev. 10, 780–790 (2016).

    Article 
    ADS 

    Google Scholar 

  • Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsko, A. et al. Turn-key operation and stabilization of Kerr frequency combs. In 2016 IEEE International Frequency Control Symposium (IFCS) 1–5 (IEEE, 2016).

  • Schmid, F., Weitenberg, J., Hänsch, T. W., Udem, T. & Ozawa, A. Simple phase noise measurement scheme for cavity-stabilized laser systems. Opt. Lett. 44, 2709–2712 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hati, A. et al. Ultra-low-noise regenerative frequency divider. IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 59, 2596–2598 (2012).

    Article 

    Google Scholar 

  • Zaoui, W. S., Kunze, A., Vogel, W. & Berroth, M. CMOS-compatible polarization splitting grating couplers with a backside metal mirror. IEEE Photon. Tech. Lett. 25, 1395–1397 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *