Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).
Google Scholar
Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18 instability. Science 368, 889–892 (2020).
Google Scholar
Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).
Google Scholar
Swann, W. C., Baumann, E., Giorgetta, F. R. & Newbury, N. R. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator. Opt. Express 19, 24387–24395 (2011).
Google Scholar
Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
Google Scholar
Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv. 8, eabp9006 (2022).
Google Scholar
Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).
Google Scholar
Kelleher, M. L. et al. Compact, portable, thermal-noise-limited optical cavity with low acceleration sensitivity. Opt. Express 31, 11954–11965 (2023).
Google Scholar
Ji, Q.-X. et al. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica 10, 279–285 (2023).
Google Scholar
Matei, D. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).
Google Scholar
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Google Scholar
Kalubovilage, M., Endo, M. & Schibli, T. R. X-band photonic microwaves with phase noise below −180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).
Google Scholar
Martin, M. J. and Ye, J. in Optical Coatings and Thermal Noise in Precision Measurement (eds Harry, G. M. et al.) 237–258 (Cambridge Univ. Press, 2012).
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).
Google Scholar
Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).
Google Scholar
Jin, N. et al. Micro-fabricated mirrors with finesse exceeding one million. Optica 9, 965–970 (2022).
Google Scholar
McLemore, C. A. et al. Miniaturizing ultrastable electromagnetic oscillators: sub-1014 frequency instability from a centimeter-scale Fabry-Perot cavity. Phys. Rev. Appl. 18, 054054 (2022).
Google Scholar
Liu, Y. et al. Low noise microwave generation with an air-gap optical reference cavity. APL Photonics 9, 010806 (2024).
Drever, R. W. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).
Google Scholar
Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).
Google Scholar
Kwon, D., Jeong, D., Jeon, I., Lee, H. & Kim, J. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nat. Commun. 13, 381 (2022).
Google Scholar
Zang, J. et al. Reduction of amplitude-to-phase conversion in charge-compensated modified unitraveling carrier photodiodes. J. Lightwave Tech. 36, 5218–5223 (2018).
Google Scholar
Li, H. & Abraham, N. Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator. IEEE J. Quantum Electron. 25, 1782–1793 (1989).
Google Scholar
Endo, M. & Schibli, T. R. Residual phase noise suppression for Pound–Drever–Hall cavity stabilization with an electro-optic modulator. OSA Continuum 1, 116–123 (2018).
Google Scholar
Ji, Q. et al. Integrated microcomb with broadband tunable normal and anomalous dispersion. In Optica Nonlinear Optics Topical Meeting 2023, Technical Digest Series Tu1A-2 (Optica Publishing Group, 2023).
Pavlov, N. et al. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser diodes. Nat. Photon. 12, 694–698 (2018).
Google Scholar
Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
Google Scholar
Peng, Y., Sun, K., Shen, Y., Beling, A. & Campbell, J. C. Photonic generation of pulsed microwave signals in the x-, ku-and k-band. Opt. Express 28, 28563–28572 (2020).
Google Scholar
Xie, X. et al. Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond. Optica 1, 429–435 (2014).
Google Scholar
Weng, W. et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett. 122, 013902 (2019).
Google Scholar
Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).
Google Scholar
Liu, J. et al. Photonic microwave generation in the x-and k-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
Google Scholar
Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 14869 (2017).
Google Scholar
Yang, Q.-F. et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).
Google Scholar
Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9, 561–564 (2022).
Google Scholar
Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature https://doi.org/10.1038/s41586-024-07136-2 (2024).
OEWaves. OE3700 Hi-Q X-band OEO. OEWaves https://www.oewaves.com/oe3700 (2020).
Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at x-ka bands. Optica 10, 33–34 (2023).
Google Scholar
Quantx Labs. Ultra-low phase noise oscillators. The purest frequency source. X-LNO. Ultra-low-noise microwave oscillator. Quantx Labs https://www.quantxlabs.com/capabilities/product-development/ultra-low-phase-noise-oscillators/ (2022).
Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).
Google Scholar
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).
Google Scholar
Xie, W. et al. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 27, 3642–3663 (2019).
Google Scholar
Idjadi, M. H. & Aflatouni, F. Integrated Pound–Drever–Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017).
Google Scholar
Cheng, H. et al. A novel approach to interface high-Q Fabry–Perot resonators with photonic circuits. APL Photon. 8, 116105 (2023).
Google Scholar
Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).
Google Scholar
Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).
Google Scholar
Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).
Google Scholar
Fortier, T. et al. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photon. Rev. 10, 780–790 (2016).
Google Scholar
Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).
Google Scholar
Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).
Google Scholar
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
Google Scholar
Matsko, A. et al. Turn-key operation and stabilization of Kerr frequency combs. In 2016 IEEE International Frequency Control Symposium (IFCS) 1–5 (IEEE, 2016).
Schmid, F., Weitenberg, J., Hänsch, T. W., Udem, T. & Ozawa, A. Simple phase noise measurement scheme for cavity-stabilized laser systems. Opt. Lett. 44, 2709–2712 (2019).
Google Scholar
Hati, A. et al. Ultra-low-noise regenerative frequency divider. IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 59, 2596–2598 (2012).
Google Scholar
Zaoui, W. S., Kunze, A., Vogel, W. & Berroth, M. CMOS-compatible polarization splitting grating couplers with a backside metal mirror. IEEE Photon. Tech. Lett. 25, 1395–1397 (2013).
Google Scholar