Strange India All Strange Things About India and world


  • Hemachudha, T., Laothamatas, J. & Rupprecht, C. E. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol 1, 101–109 (2002).

    Article 

    Google Scholar 

  • Keesey, I. W. et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat. Commun. 8, 265 (2017).

    Article 
    ADS 

    Google Scholar 

  • Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. 2nd & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Paciencia, F. M. D. et al. Mating avoidance in female olive baboons (Papio anubis) infected by Treponema pallidum. Sci. Adv. 5, eaaw9724 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article 
    CAS 

    Google Scholar 

  • Fagan, K. A. et al. A single-neuron chemosensory switch determines the valence of a sexually dimorphic sensory behavior. Curr. Biol. 28, 902–914 e905 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fenk, L. A. & de Bono, M. Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 114, 4195–4200 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jang, H. et al. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 75, 585–592 (2012).

    Article 
    CAS 

    Google Scholar 

  • Luo, J. & Portman, D. S. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr. Biol. 31, 4449–4461.e4444 (2021).

    Article 
    CAS 

    Google Scholar 

  • Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ryu, L. et al. Feeding state regulates pheromone-mediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J. 37, e98402 (2018).

    Article 

    Google Scholar 

  • Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • White, J. Q. & Jorgensen, E. M. Sensation in a single neuron pair represses male behavior in hermaphrodites. Neuron 75, 593–600 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kim, D. H. & Flavell, S. W. Host–microbe interactions and the behavior of Caenorhabditis elegans. J. Neurogenet. 34, 500–509 (2020).

    Article 
    CAS 

    Google Scholar 

  • Aprison, E. Z. & Ruvinsky, I. Counteracting ascarosides act through distinct neurons to determine the sexual identity of C. elegans pheromones. Curr. Biol. 27, 2589–2599 e2583 (2017).

    Article 
    CAS 

    Google Scholar 

  • Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature 539, 254–258 (2016).

    Article 
    ADS 

    Google Scholar 

  • Greene, J. S., Dobosiewicz, M., Butcher, R. A., McGrath, P. T. & Bargmann, C. I. Regulatory changes in two chemoreceptor genes contribute to a Caenorhabditis elegans QTL for foraging behavior. eLife 5, e21454 (2016).

    Article 

    Google Scholar 

  • Jeong, P. Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326, 994–998 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Park, D. et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 109, 9917–9922 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chute, C. D. et al. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat. Commun. 10, 3186 (2019).

    Article 
    ADS 

    Google Scholar 

  • Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G. & Ausubel, F. M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 96, 2408–2413 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sengupta, P., Colbert, H. A. & Bargmann, C. I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971–980 (1994).

    Article 
    CAS 

    Google Scholar 

  • Wu, T. et al. Pheromones modulate learning by regulating the balanced signals of two insulin-like peptides. Neuron 104, 1095–1109.e1095 (2019).

    Article 
    CAS 

    Google Scholar 

  • Richmond, J. Synaptic function. WormBook https://doi.org/10.1895/wormbook.1.69.1 (2005).

  • Larsch, J. et al. A circuit for gradient climbing in C. elegans chemotaxis. Cell Rep. 12, 1748–1760 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Y., Lu, H. & Bargmann, C. I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rahme, L. G. et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 94, 13245–13250 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wan, X. et al. SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep. 20, e46288 (2019).

    Article 

    Google Scholar 

  • Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article 
    CAS 

    Google Scholar 

  • Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347.e4323 (2021).

    Article 
    CAS 

    Google Scholar 

  • Robertson, H. M. & Thomas, J. H. The putative chemoreceptor families of C. elegans. WormBook https://doi.org/10.1895/wormbook.1.66.1 (2006).

  • Hilliard, M. A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J. 24, 63–72 (2005).

    Article 
    CAS 

    Google Scholar 

  • Schiffer, J. A. et al. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 9, e56186 (2020).

    Article 

    Google Scholar 

  • Yu, J., Yang, W., Liu, H., Hao, Y. & Zhang, Y. An aversive response to osmotic upshift in Caenorhabditis elegans. eNeuro 4, ENEURO.0282–16.2017 (2017).

    Article 

    Google Scholar 

  • Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C. & Kim, D. H. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159, 267–280 (2014).

    Article 
    CAS 

    Google Scholar 

  • McEwan, D. L., Kirienko, N. V. & Ausubel, F. M. Host translational inhibition by Pseudomonas aeruginosa exotoxin A triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 11, 364–374 (2012).

    Article 
    CAS 

    Google Scholar 

  • Dunbar, T. L., Yan, Z., Balla, K. M., Smelkinson, M. G. & Troemel, E. R. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11, 375–386 (2012).

    Article 
    CAS 

    Google Scholar 

  • Bargmann, C. I. Chemosensation in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.123.1 (2006).

  • Liu, Z. et al. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun. 9, 1128 (2018).

    Article 
    ADS 

    Google Scholar 

  • Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, L. & Strome, S. Depletion of a novel SET-domain protein enhances the sterility of mes-3 and mes-4 mutants of Caenorhabditis elegans. Genetics 159, 1019–1029 (2001).

    Article 
    CAS 

    Google Scholar 

  • Hodgkin, J., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).

    Article 
    CAS 

    Google Scholar 

  • Agrawal A. F., Lively C. M. Parasites and the evolution of self-fertilization. Evolution 55, 869–879 (2001).

    Article 
    CAS 

    Google Scholar 

  • Ebert, D., Altermatt, F. & Lass, S. A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. J. R. Soc. Interface 4, 777–785 (2007).

    Article 

    Google Scholar 

  • Kerstes, N. A., Berenos, C., Schmid-Hempel, P. & Wegner, K. M. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol. Biol. 12, 18 (2012).

    Article 

    Google Scholar 

  • Karlson, P. & Luscher, M. Pheromones: a new term for a class of biologically active substances. Nature 183, 55–56 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 4, e08688 (2015).

    Article 

    Google Scholar 

  • Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Article 
    CAS 

    Google Scholar 

  • Gracida, X. & Calarco, J. A. Cell type-specific transcriptome profiling in C. elegans using the translating ribosome affinity purification technique. Methods 126, 130–137 (2017).

  • Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pokala, N., Liu, Q., Gordus, A. & Bargmann, C. I. Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc. Natl Acad. Sci. USA 111, 2770–2775 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article 
    CAS 

    Google Scholar 

  • Ha, H. I. et al. Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron 68, 1173–1186 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382–384 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).

    Article 
    CAS 

    Google Scholar 

  • Hodgkin, J. & Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146, 149–164 (1997).

    Article 
    CAS 

    Google Scholar 

  • Bahrami, A. K. & Zhang, Y. When females produce sperm: genetics of C. elegans hermaphrodite reproductive choice. G3 3, 1851–1859 (2013).

    Article 

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar 

  • McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article 
    CAS 

    Google Scholar 

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T. and Chang, W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50(W1), W216–221 (2022).

  • Narasimhan, K. et al. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 4, e06967 (2015).

    Article 

    Google Scholar 

  • Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).

    Article 
    CAS 

    Google Scholar 

  • Askjaer, P., Ercan, S. & Meister, P. Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.169.1 (2014).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *