Hemachudha, T., Laothamatas, J. & Rupprecht, C. E. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol 1, 101–109 (2002).
Google Scholar
Keesey, I. W. et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat. Commun. 8, 265 (2017).
Google Scholar
Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. 2nd & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).
Google Scholar
Paciencia, F. M. D. et al. Mating avoidance in female olive baboons (Papio anubis) infected by Treponema pallidum. Sci. Adv. 5, eaaw9724 (2019).
Google Scholar
Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).
Google Scholar
Fagan, K. A. et al. A single-neuron chemosensory switch determines the valence of a sexually dimorphic sensory behavior. Curr. Biol. 28, 902–914 e905 (2018).
Google Scholar
Fenk, L. A. & de Bono, M. Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 114, 4195–4200 (2017).
Google Scholar
Jang, H. et al. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 75, 585–592 (2012).
Google Scholar
Luo, J. & Portman, D. S. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr. Biol. 31, 4449–4461.e4444 (2021).
Google Scholar
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).
Google Scholar
Ryu, L. et al. Feeding state regulates pheromone-mediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J. 37, e98402 (2018).
Google Scholar
Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).
Google Scholar
White, J. Q. & Jorgensen, E. M. Sensation in a single neuron pair represses male behavior in hermaphrodites. Neuron 75, 593–600 (2012).
Google Scholar
Kim, D. H. & Flavell, S. W. Host–microbe interactions and the behavior of Caenorhabditis elegans. J. Neurogenet. 34, 500–509 (2020).
Google Scholar
Aprison, E. Z. & Ruvinsky, I. Counteracting ascarosides act through distinct neurons to determine the sexual identity of C. elegans pheromones. Curr. Biol. 27, 2589–2599 e2583 (2017).
Google Scholar
Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature 539, 254–258 (2016).
Google Scholar
Greene, J. S., Dobosiewicz, M., Butcher, R. A., McGrath, P. T. & Bargmann, C. I. Regulatory changes in two chemoreceptor genes contribute to a Caenorhabditis elegans QTL for foraging behavior. eLife 5, e21454 (2016).
Google Scholar
Jeong, P. Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005).
Google Scholar
Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326, 994–998 (2009).
Google Scholar
McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011).
Google Scholar
Park, D. et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 109, 9917–9922 (2012).
Google Scholar
Chute, C. D. et al. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat. Commun. 10, 3186 (2019).
Google Scholar
Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G. & Ausubel, F. M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 96, 2408–2413 (1999).
Google Scholar
Sengupta, P., Colbert, H. A. & Bargmann, C. I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971–980 (1994).
Google Scholar
Wu, T. et al. Pheromones modulate learning by regulating the balanced signals of two insulin-like peptides. Neuron 104, 1095–1109.e1095 (2019).
Google Scholar
Richmond, J. Synaptic function. WormBook https://doi.org/10.1895/wormbook.1.69.1 (2005).
Larsch, J. et al. A circuit for gradient climbing in C. elegans chemotaxis. Cell Rep. 12, 1748–1760 (2015).
Google Scholar
Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).
Google Scholar
Zhang, Y., Lu, H. & Bargmann, C. I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184 (2005).
Google Scholar
Rahme, L. G. et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 94, 13245–13250 (1997).
Google Scholar
Wan, X. et al. SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep. 20, e46288 (2019).
Google Scholar
Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).
Google Scholar
Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347.e4323 (2021).
Google Scholar
Robertson, H. M. & Thomas, J. H. The putative chemoreceptor families of C. elegans. WormBook https://doi.org/10.1895/wormbook.1.66.1 (2006).
Hilliard, M. A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J. 24, 63–72 (2005).
Google Scholar
Schiffer, J. A. et al. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 9, e56186 (2020).
Google Scholar
Yu, J., Yang, W., Liu, H., Hao, Y. & Zhang, Y. An aversive response to osmotic upshift in Caenorhabditis elegans. eNeuro 4, ENEURO.0282–16.2017 (2017).
Google Scholar
Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C. & Kim, D. H. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159, 267–280 (2014).
Google Scholar
McEwan, D. L., Kirienko, N. V. & Ausubel, F. M. Host translational inhibition by Pseudomonas aeruginosa exotoxin A triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 11, 364–374 (2012).
Google Scholar
Dunbar, T. L., Yan, Z., Balla, K. M., Smelkinson, M. G. & Troemel, E. R. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11, 375–386 (2012).
Google Scholar
Bargmann, C. I. Chemosensation in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.123.1 (2006).
Liu, Z. et al. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun. 9, 1128 (2018).
Google Scholar
Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).
Google Scholar
Xu, L. & Strome, S. Depletion of a novel SET-domain protein enhances the sterility of mes-3 and mes-4 mutants of Caenorhabditis elegans. Genetics 159, 1019–1029 (2001).
Google Scholar
Hodgkin, J., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).
Google Scholar
Agrawal A. F., Lively C. M. Parasites and the evolution of self-fertilization. Evolution 55, 869–879 (2001).
Google Scholar
Ebert, D., Altermatt, F. & Lass, S. A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. J. R. Soc. Interface 4, 777–785 (2007).
Google Scholar
Kerstes, N. A., Berenos, C., Schmid-Hempel, P. & Wegner, K. M. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol. Biol. 12, 18 (2012).
Google Scholar
Karlson, P. & Luscher, M. Pheromones: a new term for a class of biologically active substances. Nature 183, 55–56 (1959).
Google Scholar
Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 4, e08688 (2015).
Google Scholar
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
Google Scholar
Gracida, X. & Calarco, J. A. Cell type-specific transcriptome profiling in C. elegans using the translating ribosome affinity purification technique. Methods 126, 130–137 (2017).
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
Google Scholar
Pokala, N., Liu, Q., Gordus, A. & Bargmann, C. I. Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc. Natl Acad. Sci. USA 111, 2770–2775 (2014).
Google Scholar
Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).
Google Scholar
Ha, H. I. et al. Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron 68, 1173–1186 (2010).
Google Scholar
Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382–384 (2009).
Google Scholar
Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).
Google Scholar
Hodgkin, J. & Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146, 149–164 (1997).
Google Scholar
Bahrami, A. K. & Zhang, Y. When females produce sperm: genetics of C. elegans hermaphrodite reproductive choice. G3 3, 1851–1859 (2013).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Google Scholar
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
Google Scholar
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
Google Scholar
Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T. and Chang, W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50(W1), W216–221 (2022).
Narasimhan, K. et al. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 4, e06967 (2015).
Google Scholar
Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).
Google Scholar
Askjaer, P., Ercan, S. & Meister, P. Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.169.1 (2014).