Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740–4753 (2014).
Google Scholar
deGruyter, J. N. et al. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).
Google Scholar
Hoyt, E. A. et al. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).
Google Scholar
Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).
Google Scholar
Barik, S. The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 21, 8776–8797 (2020).
Google Scholar
Hu, J. J. et al. Chemical modifications of tryptophan residues in peptides and proteins. J. Pept. Sci. 27, e3286 (2021).
Google Scholar
Bogan, A. A. & Thorn, K. S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).
Google Scholar
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
Google Scholar
Murthy, S. N. et al. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc. Natl Acad. Sci. USA 99, 2738–2742 (2002).
Google Scholar
Guo, Y. et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 347, 551–555 (2005).
Google Scholar
Gray, H. B. & Winkler, J. R. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl Acad. Sci. USA 112, 10920–10925 (2015).
Google Scholar
Orita, M. et al. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J. Med. Chem. 44, 540–547 (2001).
Google Scholar
Campanini, B. et al. Surface-exposed tryptophan residues are essential for O-acetylserine sulfhydrylase structure, function, and stability. J. Biol. Chem. 278, 37511–37519 (2003).
Google Scholar
Taylor, S. W. et al. Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J. Biol. Chem. 278, 19587–19590 (2003).
Google Scholar
Helland, R. et al. An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J. Biol. Chem. 283, 13897–13904 (2008).
Google Scholar
Ehrenshaft, M. et al. Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radical Biol. Med. 89, 220–228 (2015).
Google Scholar
John, A. et al. Yeast- and antibody-based tools for studying tryptophan C-mannosylation. Nat. Chem. Biol. 17, 428–437 (2021).
Google Scholar
Shcherbakova, A. et al. C-mannosylation supports folding and enhances stability of thrombospondin repeats. eLife 8, e52978 (2019).
Google Scholar
Antos, J. M. et al. Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J. Am. Chem. Soc. 131, 6301–6308 (2009).
Google Scholar
Popp, B. V. & Ball, Z. T. Structure-selective modification of aromatic side chains with dirhodium metallopeptide. Catalysts J. Am. Chem. Soc. 132, 6660–6662 (2010).
Google Scholar
Ruiz-Rodriguez, J., Albericio, F. & Lavilla, R. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. Chemistry 16, 1124–1127 (2010).
Google Scholar
Hansen, M. B. et al. Chemo- and regioselective ethynylation of tryptophan-containing peptides and proteins. Chemistry 22, 1572–1576 (2016).
Google Scholar
Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 138, 10798–10801 (2016).
Google Scholar
Yu, Y. et al. Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation. J. Am. Chem. Soc. 140, 6797–6800 (2018).
Google Scholar
Tower, S. J. et al. Selective modification of tryptophan residues in peptides and proteins using a biomimetic electron transfer process. J. Am. Chem. Soc. 142, 9112–9118 (2020).
Google Scholar
Imiolek, M. et al. Residue-selective protein C-formylation via sequential difluoroalkylation-hydrolysis. ACS Cent. Sci. 7, 145–155 (2021).
Google Scholar
Hoopes, C. R. et al. Donor–acceptor pyridinium salts for photo-induced electron-transfer-driven modification of tryptophan in peptides, proteins, and proteomes using visible light. J. Am. Chem. Soc. 144, 6227–6236 (2022).
Google Scholar
Zanon, P. R. A. et al. Profiling the proteome-wide selectivity of diverse electrophiles. Preprint at https://doi.org/10.26434/chemrxiv.14186561.v1 (2021).
Roy, A. et al. Hexahydropyrrolo-[2,3-b]-indole alkaloids of biological relevance: proposed biosynthesis and synthetic approaches. Arkivoc 1, 437–471 (2020).
Google Scholar
Fliss, H., Herbert, W. & Nathan, B. Oxidation of methionine residues in proteins of activated human neutrophils. Proc. Natl Acad. Sci. USA 80, 7160–7164 (1983).
Google Scholar
Davies, M. J. Protein oxidation and peroxidation. Biochem. J. 473, 805–825 (2016).
Google Scholar
Mithani, S. et al. An anomalous reaction of 2-benzenesulfonyl-3-aryloxaziridines (Davis reagents) with indoles: evidence for a stepwise reaction of the Davis reagent with a π-bond. J. Am. Chem. Soc. 11, 1159–1160 (1997).
Google Scholar
Rostovtsev, V. V. et al. A stepwise huisgen cycloaddition process: copper(i)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 114, 2708–2711 (2002).
Google Scholar
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).
Google Scholar
Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).
Google Scholar
Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).
Google Scholar
Elledge, S. K. et al. Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. Proc. Natl Acad. Sci. USA 117, 5733–5740 (2020).
Google Scholar
Hetz, C. et al. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719 (2013).
Google Scholar
Chen, M. Z. et al. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun. 8, 474–483, (2017).
Google Scholar
Walker, E. J. et al. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc. Natl Acad. Sci. USA 116, 6081–6090 (2019).
Google Scholar
Kuyama, H. et al. An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom. 17, 1642–1650 (2003).
Google Scholar
Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, 1303–1313 (2023).
Google Scholar
Dougherty, D. A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).
Google Scholar
Ma, J. C. & Dougherty, D. A. The cation-π interaction. Chem. Rev. 97, 1303–1324 (1997).
Google Scholar
Gallivan, J. P. & Dougherty, D. A. Cation-π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).
Google Scholar
Dougherty, D. A. The cation−π interaction. Acc. Chem. Res. 46, 885–893 (2013).
Google Scholar
Mahadevi, A. S. & Sastry, G. N. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).
Google Scholar
Passon, D. M. et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc. Natl Acad. Sci. USA 109, 4846–4850 (2012).
Google Scholar
Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).
Google Scholar
Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).
Google Scholar
Falini, B. et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 107, 4514–4523 (2006).
Google Scholar
Lafontaine, D. L. J. et al. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2020).
Google Scholar
Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotech. 33, 415–423 (2015).
Google Scholar
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244, (2018).
Google Scholar
Bijlsma, K., & Loeschcke, V. (eds). Environmental Stress, Adaptation, and Evolution (Springer, 2013).