Strange IndiaStrange India


  • Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740–4753 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • deGruyter, J. N. et al. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoyt, E. A. et al. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barik, S. The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 21, 8776–8797 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. J. et al. Chemical modifications of tryptophan residues in peptides and proteins. J. Pept. Sci. 27, e3286 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bogan, A. A. & Thorn, K. S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murthy, S. N. et al. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc. Natl Acad. Sci. USA 99, 2738–2742 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Y. et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 347, 551–555 (2005).

    Article 
    ADS 

    Google Scholar 

  • Gray, H. B. & Winkler, J. R. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl Acad. Sci. USA 112, 10920–10925 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orita, M. et al. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J. Med. Chem. 44, 540–547 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campanini, B. et al. Surface-exposed tryptophan residues are essential for O-acetylserine sulfhydrylase structure, function, and stability. J. Biol. Chem. 278, 37511–37519 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor, S. W. et al. Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J. Biol. Chem. 278, 19587–19590 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Helland, R. et al. An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J. Biol. Chem. 283, 13897–13904 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ehrenshaft, M. et al. Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radical Biol. Med. 89, 220–228 (2015).

    Article 
    CAS 

    Google Scholar 

  • John, A. et al. Yeast- and antibody-based tools for studying tryptophan C-mannosylation. Nat. Chem. Biol. 17, 428–437 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shcherbakova, A. et al. C-mannosylation supports folding and enhances stability of thrombospondin repeats. eLife 8, e52978 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antos, J. M. et al. Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J. Am. Chem. Soc. 131, 6301–6308 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Popp, B. V. & Ball, Z. T. Structure-selective modification of aromatic side chains with dirhodium metallopeptide. Catalysts J. Am. Chem. Soc. 132, 6660–6662 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruiz-Rodriguez, J., Albericio, F. & Lavilla, R. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. Chemistry 16, 1124–1127 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. B. et al. Chemo- and regioselective ethynylation of tryptophan-containing peptides and proteins. Chemistry 22, 1572–1576 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 138, 10798–10801 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, Y. et al. Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation. J. Am. Chem. Soc. 140, 6797–6800 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tower, S. J. et al. Selective modification of tryptophan residues in peptides and proteins using a biomimetic electron transfer process. J. Am. Chem. Soc. 142, 9112–9118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imiolek, M. et al. Residue-selective protein C-formylation via sequential difluoroalkylation-hydrolysis. ACS Cent. Sci. 7, 145–155 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoopes, C. R. et al. Donor–acceptor pyridinium salts for photo-induced electron-transfer-driven modification of tryptophan in peptides, proteins, and proteomes using visible light. J. Am. Chem. Soc. 144, 6227–6236 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zanon, P. R. A. et al. Profiling the proteome-wide selectivity of diverse electrophiles. Preprint at https://doi.org/10.26434/chemrxiv.14186561.v1 (2021).

  • Roy, A. et al. Hexahydropyrrolo-[2,3-b]-indole alkaloids of biological relevance: proposed biosynthesis and synthetic approaches. Arkivoc 1, 437–471 (2020).

    Article 

    Google Scholar 

  • Fliss, H., Herbert, W. & Nathan, B. Oxidation of methionine residues in proteins of activated human neutrophils. Proc. Natl Acad. Sci. USA 80, 7160–7164 (1983).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, M. J. Protein oxidation and peroxidation. Biochem. J. 473, 805–825 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mithani, S. et al. An anomalous reaction of 2-benzenesulfonyl-3-aryloxaziridines (Davis reagents) with indoles: evidence for a stepwise reaction of the Davis reagent with a π-bond. J. Am. Chem. Soc. 11, 1159–1160 (1997).

    Article 

    Google Scholar 

  • Rostovtsev, V. V. et al. A stepwise huisgen cycloaddition process: copper(i)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 114, 2708–2711 (2002).

    3.0.CO;2-0″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-3757%2820020715%29114%3A14%3C2708%3A%3AAID-ANGE2708%3E3.0.CO%3B2-0″ aria-label=”Article reference 33″ data-doi=”10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0″>Article 
    ADS 

    Google Scholar 

  • Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elledge, S. K. et al. Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. Proc. Natl Acad. Sci. USA 117, 5733–5740 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hetz, C. et al. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, M. Z. et al. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun. 8, 474–483, (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, E. J. et al. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc. Natl Acad. Sci. USA 116, 6081–6090 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuyama, H. et al. An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom. 17, 1642–1650 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, 1303–1313 (2023).

    Article 

    Google Scholar 

  • Dougherty, D. A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, J. C. & Dougherty, D. A. The cation-π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallivan, J. P. & Dougherty, D. A. Cation-π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dougherty, D. A. The cation−π interaction. Acc. Chem. Res. 46, 885–893 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahadevi, A. S. & Sastry, G. N. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Passon, D. M. et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc. Natl Acad. Sci. USA 109, 4846–4850 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Falini, B. et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 107, 4514–4523 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lafontaine, D. L. J. et al. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotech. 33, 415–423 (2015).

    Article 

    Google Scholar 

  • Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244, (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bijlsma, K., & Loeschcke, V. (eds). Environmental Stress, Adaptation, and Evolution (Springer, 2013).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *