Strange IndiaStrange India


  • Herberman, R. B., Nunn, M. E., Lavrin, D. H. & Asofsky, R. Effect of antibody to theta antigen on cell-mediated immunity induced in syngeneic mice by murine sarcoma virus. J. Natl Cancer Inst. 51, 1509–1512 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oldham, R. K. & Herberman, R. B. Evaluation of cell-mediated cytotoxic reactivity against tumor associated antigens with 125I-iododeoxyuridine labeled target cells. J. Immunol. 111, 862–871 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takasugi, M., Mickey, M. R. & Terasaki, P. I. Reactivity of lymphocytes from normal persons on cultured tumor cells. Cancer Res. 33, 2898–2902 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kiessling, R., Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117–121 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moretta, L. et al. Human natural killer cells: their origin, receptors and function. Eur. J. Immunol. 32, 1205–1211 (2002).

    3.0.CO;2-Y” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-4141%28200205%2932%3A5%3C1205%3A%3AAID-IMMU1205%3E3.0.CO%3B2-Y” aria-label=”Article reference 10″ data-doi=”10.1002/1521-4141(200205)32:5<1205::AID-IMMU1205>3.0.CO;2-Y”>Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moretta, A., Bottino, C., Mingari, M. C., Biassoni, R. & Moretta, L. What is a natural killer cell? Nat. Immunol. 3, 6–8 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Freud, A. G., Mundy-Bosse, B. L., Yu, J. & Caligiuri, M. A. The broad spectrum of human natural killer cell diversity. Immunity 47, 820–833 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R. & Phillips, J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 136, 4480–4486 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vivier, E. et al. High-dimensional single-cell analysis of natural killer cell heterogeneity in human blood. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3870228/v1 (2024).

  • Hendricks, D. W. et al. Cutting edge: NKG2ChiCD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J. Immunol. 192, 4492–4496 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez-Verges, S. et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116, 3865–3874 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009). This study, along with ref. 23, describes NK cells with memory-like functions.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper, M. A. & Yokoyama, W. M. Memory-like responses of natural killer cells. Immunol. Rev. 235, 297–305 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rückert, T., Lareau, C. A., Mashreghi, M. F., Ludwig, L. S. & Romagnani, C. Clonal expansion and epigenetic inheritance of long-lasting NK cell memory. Nat. Immunol. 23, 1551–1563 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brownlie, D. et al. Expansions of adaptive-like NK cells with a tissue-resident phenotype in human lung and blood. Proc. Natl Acad. Sci. USA 118, e2016580118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, F. et al. A pan-cancer single-cell panorama of human natural killer cells. Cell 186, 4235–4251 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cortez, V. S. et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat. Immunol. 18, 995–1003 (2017). This study, along with ref. 32, describes the TGFβ-induced transition of NK cells into ILC1-like cells with a decrease antitumour functions.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kansler, E. R. et al. Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat. Immunol. 23, 904–915 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarno, G. et al. Divergent roles for STAT4 in shaping differentiation of cytotoxic ILC1 and NK cells during gut inflammation. Proc. Natl Acad. Sci. USA 120, e2306761120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopes, N. et al. Tissue-specific transcriptional profiles and heterogeneity of natural killer cells and group 1 innate lymphoid cells. Cell Rep. Med. 3, 100812 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagasawa, M. et al. KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2 ILCs biased toward ILC2 or ILC3. J. Exp. Med. 216, 1762–1776 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crinier, A. et al. Multidimensional molecular controls defining NK/ILC1 identity in cancers. Semin. Immunol. 52, 101424 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yudanin, N. A. et al. Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50, 505–519 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Björkström, N. K., Strunz, B. & Ljunggren, H. G. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Vivier, E., Nunes, J. A. & Vely, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Long, E. O. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol. Rev. 224, 70–84 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). This study, along with refs. 43–46, describes stress-induced ligands recognized by NK-cell-activating receptors.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sen Santara, S. et al. The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. Nature 616, 348–356 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206, 1495–1503 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolf, N. K., Kissiov, D. U. & Raulet, D. H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 23, 90–105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Laskowski, T. J., Biederstadt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hatjiharissi, E. et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood 110, 2561–2564 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedman, D. et al. Natural killer cell immune synapse formation and cytotoxicity are controlled by tension of the target interface. J. Cell Sci. 134, jcs258570 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lettau, M., Paulsen, M., Schmidt, H. & Janssen, O. Insights into the molecular regulation of FasL (CD178) biology. Eur. J. Cell Biol. 90, 456–466 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, L. L. & Kagan, J. C. Targeting innate immune pathways for cancer immunotherapy. Immunity 56, 2206–2217 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017). This report, along with refs. 60 and 61, describes anti-metastatic functions of NK cells.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 41, 272–287 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594, 566–571 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018). This study, along with ref. 63, describes the role of cytokines and chemokines secreted by NK cells in eliciting a multicellular antitumour immune response.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirchhammer, N. et al. NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci. Transl. Med. 14, eabm9043 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olson, J. A. et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 115, 4293–4301 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simonetta, F., Alvarez, M. & Negrin, R. S. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front. Immunol. 8, 465 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhatchinamoorthy, K., Colbert, J. D. & Rock, K. L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 636568 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Moretta, A. et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol. Rev. 155, 105–117 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yokoyama, W. M. Natural killer cell immune responses. Immunol. Res. 32, 317–325 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 (2018). This study, along with ref. 74, describes the role of monalizumab in promoting antitumour immunity.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreae, S., Buisson, S. & Triebel, F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 102, 2130–2137 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baixeras, E. et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kisielow, M., Kisielow, J., Capoferri-Sollami, G. & Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 35, 2081–2088 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merino, A. et al. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J. Clin. Invest. 129, 3770–3785 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huard, B. et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl Acad. Sci. USA 94, 5744–5749 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Workman, C. J., Rice, D. S., Dugger, K. J., Kurschner, C. & Vignali, D. A. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur. J. Immunol. 32, 2255–2263 (2002).

    3.0.CO;2-A” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-4141%28200208%2932%3A8%3C2255%3A%3AAID-IMMU2255%3E3.0.CO%3B2-A” aria-label=”Article reference 79″ data-doi=”10.1002/1521-4141(200208)32:8<2255::AID-IMMU2255>3.0.CO;2-A”>Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, S., Liu, X., Li, T., Li, Z. & Hu, F. LAG3 (CD223) and autoimmunity: emerging evidence. J. Autoimmun. 112, 102504 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sordo-Bahamonde, C. et al. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers 13, 2112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 334–347 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, M., Arooj, S. & Wang, H. NK cell-based immune checkpoint inhibition. Front. Immunol. 11, 167 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ndhlovu, L. C. et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119, 3734–3743 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, H. et al. IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunol. Res. 6, 685–695 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • da Silva, I. P. et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, L. et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol. 29, 635–641 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, W. et al. Tim-3 blockade elicits potent anti-multiple myeloma immunity of natural killer cells. Front. Oncol .12, 739976 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Correa, B. et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers 11, 877 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alteber, Z. et al. Therapeutic targeting of checkpoint receptors within the DNAM1 axis. Cancer Discov. 11, 1040–1051 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Temming, A. R. et al. Functional attributes of antibodies, effector cells, and target cells affecting nk cell-mediated antibody-dependent cellular cytotoxicity. J. Immunol. 203, 3126–3135 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Horst, H. J., Nijhof, I. S., Mutis, T. & Chamuleau, M. E. D. Fc-engineered antibodies with enhanced Fc-effector function for the treatment of B-cell malignancies. Cancers 12, 3041 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suzuki, E. et al. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin. Cancer Res. 13, 1875–1882 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X., Mathieu, M. & Brezski, R. J. IgG Fc engineering to modulate antibody effector functions. Protein Cell 9, 63–73 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Rothe, A. et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 125, 4024–4031 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiernik, A. et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res. 19, 3844–3855 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vallera, D. A. et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother. Radiopharm. 28, 274–282 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gleason, M. K. et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol. Cancer Ther. 11, 2674–2684 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gleason, M. K. et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123, 3016–3026 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmohl, J. U. et al. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res. Treat. 49, 1140–1152 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Felices, M. et al. Potent cytolytic activity and specific IL15 delivery in a second-generation trispecific killer engager. Cancer Immunol. Res. 8, 1139–1149 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, J. et al. P618: second-generation CD19 targeting tri-specific killer engager drives robust nk cell function against B cell malignancies. HemaSphere 6, 517–518 (2022).

    Article 

    Google Scholar 

  • Romee, R. et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121, 3599–3608 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coudert, J. D., Scarpellino, L., Gros, F., Vivier, E. & Held, W. Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways. Blood 111, 3571–3578 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, W. K. et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol. Res. 6, 776–787 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raynaud, A. et al. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. Oncoimmunology 10, 1854529 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safran, H. et al. Phase 1/2 study of DF1001, a novel tri-specific, NK cell engager therapy targeting HER2, in patients with advanced solid tumors: phase 1 DF1001 monotherapy dose-escalation results. J. Clin. Oncol. 41, 2508–2508 (2023).

    Article 

    Google Scholar 

  • von Strandmann, E. P. et al. A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107, 1955–1962 (2006).

    Article 

    Google Scholar 

  • Wang, Y. et al. BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against multiple myeloma. J. Immunother. 43, 175–188 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl Acad. Sci. USA 104, 3384–3389 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gauthier, L. et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. 41, 1296–1306 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colomar-Carando, N. et al. Exploiting natural killer cell engagers to control pediatric B-cell precursor acute lymphoblastic leukemia. Cancer Immunol. Res. 10, 291–302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demaria, O. et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep. Med. 3, 100783 (2022). This study describes the first tetraspecific NK cell engagers armed with a variant of IL-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arulanandam, A. et al. 756P glypican-3 (GPC3) and NKp46 directed FLEX-NK engager antibody (CYT-303) recruits natural killer (NK) cells to tumors in a preclinical hepatocellular carcinoma (HCC) mouse model. Ann. Oncol. 33, S889 (2022).

    Article 

    Google Scholar 

  • Lin, L. et al. P842: novel multifunctional tetravalent CD38 NKp46 FLEX-NK engagers actively target and kill multiple myeloma cells. HemaSphere 6, 736–737 (2022).

    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • Pende, D. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinheiro, P. F., Justino, G. C. & Marques, M. M. NKp30—a prospective target for new cancer immunotherapy strategies. Br. J. Pharmacol. 177, 4563–4580 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medjouel Khlifi, H., Guia, S., Vivier, E. & Narni-Mancinelli, E. Role of the ITAM-bearing receptors expressed by natural killer cells in cancer. Front. Immunol. 13, 898745 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pesce, S. et al. B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4, e1001224 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berrien-Elliott, M. M., Jacobs, M. T. & Fehniger, T. A. Allogeneic natural killer cell therapy. Blood 141, 856–868 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piccinelli, S., Romee, R. & Shapiro, R. M. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin. Hematol. 60, 42–51 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nahi, H. et al. Autologous NK cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep. Med. 3, 100508 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. Loss of metabolic fitness drives tumor resistance after CAR-NK cell therapy and can be overcome by cytokine engineering. Sci. Adv. 9, eadd6997 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foltz, J. A., Moseman, J. E., Thakkar, A., Chakravarti, N. & Lee, D. A. TGFβ imprinting during activation promotes natural killer cell cytokine hypersecretion. Cancers 10, 423 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terrén, I. et al. Cytokine-induced memory-like NK cells: from the basics to clinical applications. Front. Immunol. 13, 884648 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fehniger, T. A. & Cooper, M. A. Harnessing NK cell memory for cancer immunotherapy. Trends Immunol. 37, 877–888 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kerbauy, L. N. et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin. Cancer Res. 27, 3744–3756 (2021). This study describes the advantages of combining NK cell infusions and NK cell engagers.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shapiro, R. M. et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J. Clin. Invest. 132, e154334 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oyer, J. L. et al. Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: Clinical implications for cancer treatment. Cytotherapy 18, 653–663 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Denman, C. J. et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7, e30264 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oyer, J. L. et al. Cryopreserved PM21-particle-expanded natural killer cells maintain cytotoxicity and effector functions in vitro and in vivo. Front. Immunol. 13, 861681 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coyle, K. M., Hawke, L. G. & Ormiston, M. L. Addressing natural killer cell dysfunction and plasticity in cell-based cancer therapeutics. Cancers 15, 1743 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balzasch, B. M. & Cerwenka, A. Microenvironmental signals shaping NK-cell reactivity in cancer. Eur. J. Immunol. 53, e2250103 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tong, L. et al. NK cells and solid tumors: therapeutic potential and persisting obstacles. Mol. Cancer 21, 206 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burga, R. A. et al. Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clin. Cancer Res. 25, 4400–4412 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solocinski, K. et al. Overcoming hypoxia-induced functional suppression of NK cells. J. Immunother. Cancer 8, e000246 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, H. et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224–237 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daher, M. et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 137, 624–636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guedan, S., Calderon, H., Posey, A. D. Jr & Maus, M. V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12, 145–156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Biederstädt, A. & Rezvani, K. Engineering the next generation of CAR-NK immunotherapies. Int. J. Hematol. 114, 554–571 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020). This study describes the clinical efficacy of CAR NK cells against B cell malignancies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leem, G. et al. Safety and efficacy of allogeneic natural killer cells in combination with pembrolizumab in patients with chemotherapy-refractory biliary tract cancer: a multicenter open-label phase 1/2a trial. Cancers 14, 4229 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marotel, M., Hasim, M. S., Hagerman, A. & Ardolino, M. The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 59–68 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, R., Ryan, J., Pan, D., Wucherpfennig, K. W. & Letai, A. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 185, 1521–1538 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walle, T. et al. Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. Sci. Adv. 8, eabh4050 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cichocki, F. et al. Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma. Nat. Commun. 13, 7341 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cichocki, F. et al. Nicotinamide enhances natural killer cell function and yields remissions in patients with non-Hodgkin lymphoma. Sci. Transl. Med. 15, eade3341 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lordo, M. R., Stiff, A. R., Oakes, C. C. & Mundy-Bosse, B. L. Effects of epigenetic therapy on natural killer cell function and development in hematologic malignancy. J. Leukocyte Biol. 113, 518–524 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Young, R. M., Engel, N. W., Uslu, U., Wellhausen, N. & June, C. H. Next-generation CAR T-cell therapies. Cancer Discov. 12, 1625–1633 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reighard, S. D. et al. Therapeutic targeting of follicular T cells with chimeric antigen receptor-expressing natural killer cells. Cell Rep. Med. 1, 100003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *