Strange IndiaStrange India


  • Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Udem, Th., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article 
    ADS 

    Google Scholar 

  • Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article 
    ADS 

    Google Scholar 

  • Bao, C. et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun. 12, 6573 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Siegman, A. E. Lasers (Univ. Science Books, 1986).

  • Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brasch, V. et al. Photonic chip–based optical frequency comb using soliton cherenkov radiation. Science 351, 357–360 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2021).

    Article 
    ADS 

    Google Scholar 

  • Wang, C. et al. Monolithic lithium niobate photonic circuits for kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Diddams, S. A., Ma, L.-S., Ye, J. & Hall, J. L. Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24, 1747–1749 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Esteban-Martin, A., Samanta, G. K., Devi, K., Kumar, S. C. & Ebrahim-Zadeh, M. Frequency-modulation-mode-locked optical parametric oscillator. Opt. Lett. 37, 115–117 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786–2789 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hwang, A. Y. et al. Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator. Optica 10, 1535–1542 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706–2709 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kashiwazaki, T. et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photon. 5, 036104 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).

    Article 
    ADS 

    Google Scholar 

  • McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13, 4532 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stokowski, H. S. et al. Integrated quantum optical phase sensor in thin film lithium niobate. Nat. Commun. 14, 3355 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Exp. 28, 24452–24458 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Helgason, Ó. B. et al. Power-efficient soliton microcombs. Preprint at https://arxiv.org/abs/2202.09410 (2022).

  • Li, J. et al. Efficiency of pulse pumped soliton microcombs. Optica 9, 231–239 (2022).

    Article 
    ADS 

    Google Scholar 

  • Harris, S. E. & Targ, R. FM oscillation of the He-Ne laser. Appl. Phys. Lett. 5, 202–204 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuizenga, D. & Siegman, A. FM-laser operation of the Nd:YAG laser. IEEE J. Quantum Electron. 6, 673–677 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eckardt, R. C., Nabors, C. D., Kozlovsky, W. J. & Byer, R. L. Optical parametric oscillator frequency tuning and control. J. Opt. Soc. Am. B 8, 646–667 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).

    Article 
    ADS 

    Google Scholar 

  • Op de Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).

    Article 
    ADS 

    Google Scholar 

  • Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photon. 10, 516–520 (2016).

    Article 
    ADS 

    Google Scholar 

  • Mishra, J. et al. Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Opt. Exp. 30, 32752–32760 (2022).

    Article 
    CAS 

    Google Scholar 

  • Celik, O. T. et al. High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate. Optics Express 30, 23177–23186 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sordillo, L. A. & Sordillo, P. P. (eds) Short-Wavelength Infrared Windows for Biomedical Applications (SPIE Press, 2022).

  • Willer, U., Saraji, M., Khorsandi, A., Geiser, P. & Schade, W. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44, 699–710 (2006).

    Article 

    Google Scholar 

  • Goldenstein, C. S., Spearrin, R., Jeffries, J. B. & Hanson, R. K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 60, 132–176 (2017).

    Article 

    Google Scholar 

  • Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640–4645 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *