Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).
Google Scholar
Udem, Th., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Google Scholar
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Google Scholar
Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).
Google Scholar
Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
Google Scholar
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).
Google Scholar
Bao, C. et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun. 12, 6573 (2021).
Google Scholar
Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).
Google Scholar
Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).
Google Scholar
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
Google Scholar
Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
Google Scholar
Siegman, A. E. Lasers (Univ. Science Books, 1986).
Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).
Google Scholar
Brasch, V. et al. Photonic chip–based optical frequency comb using soliton cherenkov radiation. Science 351, 357–360 (2016).
Google Scholar
Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).
Google Scholar
Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2021).
Google Scholar
Wang, C. et al. Monolithic lithium niobate photonic circuits for kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).
Google Scholar
Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).
Google Scholar
Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
Google Scholar
Diddams, S. A., Ma, L.-S., Ye, J. & Hall, J. L. Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24, 1747–1749 (1999).
Google Scholar
Esteban-Martin, A., Samanta, G. K., Devi, K., Kumar, S. C. & Ebrahim-Zadeh, M. Frequency-modulation-mode-locked optical parametric oscillator. Opt. Lett. 37, 115–117 (2012).
Google Scholar
Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786–2789 (2017).
Google Scholar
Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Google Scholar
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Google Scholar
Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).
Google Scholar
Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).
Google Scholar
Hwang, A. Y. et al. Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator. Optica 10, 1535–1542 (2023).
Google Scholar
Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706–2709 (2022).
Google Scholar
Kashiwazaki, T. et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photon. 5, 036104 (2020).
Google Scholar
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).
Google Scholar
Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).
Google Scholar
McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13, 4532 (2022).
Google Scholar
Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).
Google Scholar
Li, M. et al. Integrated Pockels laser. Nat. Commun. 13, 5344 (2022).
Google Scholar
Stokowski, H. S. et al. Integrated quantum optical phase sensor in thin film lithium niobate. Nat. Commun. 14, 3355 (2023).
Google Scholar
Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Exp. 28, 24452–24458 (2020).
Google Scholar
Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).
Google Scholar
Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).
Google Scholar
Helgason, Ó. B. et al. Power-efficient soliton microcombs. Preprint at https://arxiv.org/abs/2202.09410 (2022).
Li, J. et al. Efficiency of pulse pumped soliton microcombs. Optica 9, 231–239 (2022).
Google Scholar
Harris, S. E. & Targ, R. FM oscillation of the He-Ne laser. Appl. Phys. Lett. 5, 202–204 (1964).
Google Scholar
Kuizenga, D. & Siegman, A. FM-laser operation of the Nd:YAG laser. IEEE J. Quantum Electron. 6, 673–677 (1970).
Google Scholar
Eckardt, R. C., Nabors, C. D., Kozlovsky, W. J. & Byer, R. L. Optical parametric oscillator frequency tuning and control. J. Opt. Soc. Am. B 8, 646–667 (1991).
Google Scholar
Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).
Google Scholar
Op de Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
Google Scholar
Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photon. 10, 516–520 (2016).
Google Scholar
Mishra, J. et al. Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Opt. Exp. 30, 32752–32760 (2022).
Google Scholar
Celik, O. T. et al. High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate. Optics Express 30, 23177–23186 (2022).
Google Scholar
Sordillo, L. A. & Sordillo, P. P. (eds) Short-Wavelength Infrared Windows for Biomedical Applications (SPIE Press, 2022).
Willer, U., Saraji, M., Khorsandi, A., Geiser, P. & Schade, W. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44, 699–710 (2006).
Google Scholar
Goldenstein, C. S., Spearrin, R., Jeffries, J. B. & Hanson, R. K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 60, 132–176 (2017).
Google Scholar
Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640–4645 (2018).
Google Scholar