Strange IndiaStrange India


  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  • Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Wen, X. G. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. 66, 802 (1991).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature https://doi.org/10.1038/s41586-023-06289-w (2023).

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature https://doi.org/10.1038/S41586-023-06536-0 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature https://doi.org/10.1038/S41586-023-06452-3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar 

  • Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).

    Google Scholar 

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B Condens. Matter Mater. Phys. 87, 035132 (2013).

    Article 
    ADS 

    Google Scholar 

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science 367, 895–900 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H., Kumar, U., Sun, K. & Lin, S. Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article 
    CAS 

    Google Scholar 

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

  • Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys Rev Res 2, 023237 (2020).

    Article 
    CAS 

    Google Scholar 

  • Abouelkomsan, A., Liu, Z. & Bergholtz, E. J. Particle-hole duality, emergent fermi liquids, and fractional Chern insulators in moiré flatbands. Phys. Rev. Lett. 124, 106803 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gao, Q., Dong, J., Ledwith, P., Parker, D. & Khalaf, E. Untwisting moiré physics: almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene. Phys. Rev. Lett. 131, 096401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).

  • Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article 
    ADS 

    Google Scholar 

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moire superlattices. Phys. Rev. B. 108, 155406 (2023).

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barkeshli, M. & McGreevy, J. Continuous transitions between composite Fermi liquid and Landau Fermi liquid: a route to fractionalized Mott insulators. Phys. Rev. B. Condens. Matter Mater. Phys. 86, 075136 (2012).

    Article 
    ADS 

    Google Scholar 

  • Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moire TMD bilayers. Preprint at https://arxiv.org/abs/2308.10903 (2023).

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L., Zhang, Y., Camacho, J., Khodas, M. & Zaliznyak, I. The experimental observation of quantum Hall effect of l = 3 chiral quasiparticles in trilayer graphene. Nat. Phys. 7, 953–957 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article 
    CAS 

    Google Scholar 

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral stacked graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01520-1 (2023).

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

  • Liu, K. et al. Interaction-driven spontaneous broken-symmetry insulator and metals in ABCA tetralayer graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01558-1 (2023).

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, G. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 22, 238–245 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sample, H. H., Bruno, W. J., Sample, S. B. & Sichel, E. K. Reverse‐field reciprocity for conducting specimens in magnetic fields. J. Appl. Phys. 61, 1079–1084 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *