Nelson, M. E. & MacIver, M. A. Sensory acquisition in active sensing systems. J. Comp. Physiol. A 192, 573–586 (2006).
Google Scholar
Jones, T. K., Allen, K. M. & Moss, C. F. Communication with self, friends and foes in active-sensing animals. J. Exp. Biol. 224, jeb242637 (2021).
Google Scholar
Heiligenberg, W. Neural Nets in Electric Fish (MIT Press, 1991).
Rose, G. J. Insights into neural mechanisms and evolution of behaviour from electric fish. Nat. Rev. Neurosci. 5, 943–951 (2004).
Google Scholar
Braca, P., Goldhahn, R., Ferri, G. & LePage, K. D. Distributed information fusion in multistatic sensor networks for underwater surveillance. IEEE Sens. J. 16, 4003–4014 (2015).
Google Scholar
Chernyak, V. S. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems (CRC, 1998).
Boyer, F., Lebastard, V., Chevallereau, C., Mintchev, S. & Stefanini, C. Underwater navigation based on passive electric sense: new perspectives for underwater docking. Int. J. Robot. Res. 34, 1228–1250 (2015).
Google Scholar
Flohr, T. G. et al. Multi-detector row CT systems and image-reconstruction techniques. Radiology 235, 756–773 (2005).
Google Scholar
Heiligenberg, W. Electrolocation jamming avoidance in the mormyrid fish Brienomyrus. J. Comp. Physiol. 109, 357–372 (1976).
Google Scholar
Gregg, J. D., Dudzinski, K. M. & Smith, H. V. Do dolphins eavesdrop on the echolocation signals of conspecifics? Int. J. Comp. Psychol. 20 65–88 (2007).
Kuc, R. Object localization from acoustic emissions produced by other sonars (L). J. Acoust. Soc. Am. 112, 1753–1755 (2002).
Google Scholar
Dechmann, D. K. et al. Experimental evidence for group hunting via eavesdropping in echolocating bats. Proc. Biol. Sci. 276, 2721–2728 (2009).
Google Scholar
Götz, T., Verfuß, U. K. & Schnitzler, H.-U. ‘Eavesdropping’ in wild rough-toothed dolphins (Steno bredanensis)? Biol. Lett. 2, 5–7 (2006).
Google Scholar
Chiu, C., Xian, W. & Moss, C. F. Flying in silence: echolocating bats cease vocalizing to avoid sonar jamming. Proc. Natl Acad. Sci. USA 105, 13116–13121 (2008).
Google Scholar
Hopkins, C. D. Neuroethology of electric communication. Annu. Rev. Neurosci. 11, 497–535 (1988).
Google Scholar
Bell, C. C. Sensory coding and corollary discharge effects in mormyrid electric fish. J. Exp. Biol. 146, 229–253 (1989).
Google Scholar
Kawasaki, M. in Electroreception Springer Handbook of Auditory Research (eds Bullock, T. H. et al.) Ch. 7, 154–194 (Springer, 2005).
Rother, D. et al. Electric images of two low resistance objects in weakly electric fish. BioSystems 71, 169–177 (2003).
Google Scholar
Bell, C. C. in Electroreception (eds Bullock, T. H. & Heiligenberg, W.) 423–452 (Wiley, 1986).
Fortune, E. S. The decoding of electrosensory systems. Curr. Opin. Neurobiol. 16, 474–480 (2006).
Google Scholar
Push, S. & Moller, P. Spatial aspects of electrolocation in the mormyrid fish, Gnathonemus petersii. J. Physiol. 75, 355–357 (1979).
Google Scholar
Pedraja, F., Hofmann, V., Goulet, J. & Engelmann, J. Task-related sensorimotor adjustments increase the sensory range in electrolocation. J. Neurosci. 40, 1097–1109 (2020).
Google Scholar
Babineau, D., Longtin, A. & Lewis, J. E. Modeling the electric field of weakly electric fish. J. Exp. Biol. 209, 3636–3651 (2006).
Google Scholar
von der Emde, G. & Schwarz, S. Imaging of objects through active electrolocation in Gnathonemus petersii. J. Physiol. 96, 431–444 (2002).
Chen, L., House, J. L., Krahe, R. & Nelson, M. E. Modeling signal and background components of electrosensory scenes. J. Comp. Physiol. A 191, 331–345 (2005).
Google Scholar
Baker, C. A. & Carlson, B. A. Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons. J. Neurosci. 34, 14272–14287 (2014).
Google Scholar
Xu-Friedman, M. A. & Hopkins, C. D. Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J. Exp. Biol. 202, 1311–1318 (1999).
Google Scholar
Post, N. & von der Emde, G. The ‘novelty response’ in an electric fish: response properties and habituation. Physiol. Behav. 68, 115–128 (1999).
Google Scholar
Enikolopov, A. G., Abbott, L. F. & Sawtell, N. B. Internally generated Predictions enhance neural and behavioral detection of sensory stimuli in an electric fish. Neuron 99, 135–146 (2018).
Google Scholar
Worm, M. et al. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl Acad. Sci. USA 115, 6852–6857 (2018).
Google Scholar
Moller, P. Electric Fishes: History and Behavior (Chapman and Hall, 1995).
Russell, C. J., Myers, J. P. & Bell, C. C. The echo response in Gnathonemus petersii. J. Comp. Physiol. 92, 181–200 (1974).
Google Scholar
Kramer, B. Electric organ discharge interaction during interspecific agonistic behaviour in freely swimming mormyrid fish. A method to evaluate two or more. J. Comp. Physiol. 93, 203–236 (1974).
Google Scholar
Lissmann, H. W. & Machin, K. E. The mechanism of object location in Gymnarchus niloticus and similar fish. J. Exp. Biol. 35, 451–486 (1958).
Google Scholar
von der Emde, G. Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. A 167, 413–421 (1990).
Google Scholar
Hall, J. C., Bell, C. & Zelick, R. Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J. Comp Physiol. A 177, 29–39 (1995).
Bell, C. C. Mormyromast electroreceptor organs and their afferents in mormyrid electric fish: III. Physiological differences between two morphological types of fibers. J. Neurophysiol. 63, 319–332 (1990).
Google Scholar
Toerring, M. J. & Moller, P. Locomotor and electric displays associated with electrolocation during exploratory behavior in mormyrid fish. Behav. Brain Res. 12, 291–306 (1984).
Google Scholar
Russell, C. J. & Bell, C. C. Neuronal responses to electrosensory input in the mormyrid valvula cerebelli. J. Neurophysiol. 41, 1495–1510 (1978).
Google Scholar
Sawtell, N. B., Mohr, C. & Bell, C. C. Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei. J. Neurophysiol. 93, 2090–2103 (2005).
Google Scholar
Prechtl, J. C. et al. Sensory processing in the pallium of a mormyrid fish. J. Neurosci. 18, 7381–7393 (1998).
Google Scholar
Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).
Google Scholar
Moller, P. Electric signals and schooling behavior in a weakly electric fish, Marcusenius cyprinoides L. (Mormyriformes). Science 193, 697–699 (1976).
Google Scholar
Worm, M., Kirschbaum, F. & von der Emde, G. Social interactions between live and artificial weakly electric fish: electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish. PLoS ONE 12, e0184622 (2017).
Google Scholar
Gebhardt, K., Alt, W. & von der Emde, G. Electric discharge patterns in group-living weakly electric fish, Mormyrus rume (Mormyridae, Teleostei). Behaviour 149, 623–644 (2012).
Schuster, S. Count and spark? The echo response of the weakly electric fish Gnathonemus petersii to series of pulses. J. Exp. Biol. 204, 1401–1412 (2001).
Google Scholar
Bell, C. C., Han, V. & Sawtell, N. B. Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci. 31, 1–24 (2008).
Google Scholar
Nieuwenhuys, R. & Nicholson, C. in Neurobiology of Cerebellar Evolution and Development (ed. Llinas, R.) 107–134 (Am. Med. Assoc, 1969).
Sukhum, K. V., Shen, J. & Carlson, B. A. Extreme enlargement of the cerebellum in a clade of teleost fishes that evolved a novel active sensory system. Curr. Biol. 28, 3857–3863 (2018).
Google Scholar
Finger, T. E., Bell, C. C. & Russell, C. J. Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp. Brain Res. 42, 23–33 (1981).
Google Scholar
Bell, C. C., Myers, J. P. & Russell, C. J. Electric organ discharge patterns during dominance related behavioral displays in Gnathonemus petersii (Mormyridae). J. Comp. Physiol. 92, 201–228 (1974).
Google Scholar
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
Google Scholar
Arthur, D. & Vassilvitskii, S. k-means++: the advantages of careful seeding. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’07, 1027–1035 (SIAM, 2007).
Braun, E., Geurten, B. & Egelhaaf, M. Identifying prototypical components in behaviour using clustering algorithms. PLoS ONE 5, e9361 (2010).
Google Scholar
Migliaro, A., Caputi, A. A. & Budelli, R. Theoretical analysis of pre-receptor image conditioning in weakly electric fish. PLoS Comput. Biol. 1, 123–131 (2005).
Google Scholar
Engelmann, J., Bacelo, J., van den, B. E. & Grant, K. Sensory and motor effects of etomidate anesthesia. J. Neurophysiol. 95, 1231–1243 (2006).
Google Scholar
Requarth, T. & Sawtell, N. B. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit. Neuron 82, 896–907 (2014).
Google Scholar
Bell, C. C., Grant, K. & Serrier, J. Corollary discharge effects and sensory processing in the mormyrid electrosensory lobe: I. Field potentials and cellular activity in associated structures. J. Neurophysiol. 68, 843–858 (1992).
Google Scholar
Bell, C. C., Caputi, A. & Grant, K. Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. J. Neurosci. 17, 6409–6422 (1997).
Google Scholar
Mohr, C., Roberts, P. D. & Bell, C. C. Cells of the mormyromast region of the mormyrid electrosensory lobe: I. Responses to the electric organ corollary discharge and to electrosensory stimuli. J. Neurophysiol. 90, 1193–1210 (2003).
Google Scholar
Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).
Google Scholar