Reinsel, D., Gantz, J. & Rydning, J. The Digitization of the World from Edge to Core (IDC, 2018); https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
Sony & Panasonic. White Paper: Archival Disc Technology (2020). Sony Corporation and Panasonic Corporation https://panasonic.cn/wp-content/uploads/2020/05/Archival-Disc-Technology-%EF%BC%9A2nd-Edition.pdf.
DeBoer, S. Micron and Western Digital: the future of the National Semiconductor Technology Center. Micron https://www.micron.com/about/blog/2022/august/micron-and-western-digital (2022).
Sarid, D. & Schechtman, B. H. A roadmap for optical data storage applications. Opt. Photon. News 18, 32–37 (2007).
Google Scholar
Gu, M., Li, X. & Cao, Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).
Google Scholar
Ganic, D., Day, D. & Gu, M. Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination. Opt. Lasers Eng. 38, 433–437 (2002).
Google Scholar
Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).
Google Scholar
Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photon. 15, 901–907 (2021).
Google Scholar
Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).
Google Scholar
Zhang, J., Gecevičius, M., Beresna, M. & Kazansky, P. G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014).
Google Scholar
Wang, H. et al. 100‐layer error‐free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photon. Rev. 16, 2100563 (2022).
Google Scholar
Parthenopoulos, D. A. & Rentzepis, P. M. Three-dimensional optical storage memory. Science 245, 843–845 (1989).
Google Scholar
Walker, E. & Rentzepis, P. M. Two-photon technology a new dimension. Nat. Photon. 2, 406–408 (2008).
Google Scholar
Walker, E., Dvornikov, A., Coblentz, K., Esener, S. & Rentzepis, P. Toward terabyte two-photon 3D disk. Opt. Express 15, 12264–12276 (2007).
Google Scholar
Day, D., Gu, M. & Smallridge, A. Use of two-photon excitation for erasable–rewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt. Lett. 24, 948–950 (1999).
Google Scholar
Kawata, Y., Ishitobi, H. & Kawata, S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt. Lett. 23, 756–758 (1998).
Google Scholar
Kallepalli, D. L. N. et al. Ultra-high density optical data storage in common transparent plastics. Sci. Rep. 6, 26163 (2016).
Google Scholar
Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016).
Google Scholar
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).
Google Scholar
Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & McLeod, R. R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).
Google Scholar
Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).
Google Scholar
Andrew, T. L., Tsai, H.-Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917–921 (2009).
Google Scholar
Fischer, J. & Wegener, M. Ultrafast polymerization Inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv. Opt. Mater. 24, OP65–OP69 (2012).
Google Scholar
Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011).
Google Scholar
Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).
Google Scholar
Chen, X. & Gu, M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size. Ultrafast Sci. 2022, 0001 (2022).
Google Scholar
Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).
Google Scholar
Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 7, eabe2209 (2021).
Google Scholar
Hu, R., Leung, N. L. C. & Tang, B. Z. Aie macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 43, 4494–4562 (2014).
Google Scholar
Liaros, N. et al. Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. iScience 25, 103600 (2022).
Google Scholar
Fischer, J., Freymann, G. V. & Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).
Google Scholar
Gardner, T. Has HDD areal density stalled? StorageNewsletter https://www.storagenewsletter.com/2022/04/19/has-hdd-areal-density-stalled (2022).
Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).
Google Scholar
Song, B. et al. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat. Commun. 14, 3115 (2023).
Google Scholar
Tang, S. et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 50, 12616–12655 (2021).
Google Scholar
Ma, C. et al. A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer. Polym. Chem. 6, 3634–3640 (2015).
Google Scholar
Zhao, D. et al. Photopolymerization with AIE dyes for solid-state luminophores. Polym. Chem. 11, 1589–1596 (2020).
Google Scholar
Zhang, T. et al. Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. J. Phys. Chem. A 118, 9094–9104 (2014).
Google Scholar
Gu, X. et al. Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv. Funct. Mater. 22, 4862–4872 (2012).
Google Scholar
Sonoda, Y., Tsuzuki, S., Goto, M., Tohnai, N. & Yoshida, M. Fluorescence spectroscopic properties of nitro-substituted diphenylpolyenes: effects of intramolecular planarization and intermolecular interactions in crystals. J. Phys. Chem. A 114, 172–182 (2010).
Google Scholar
Chi, T. et al. Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution. ACS Appl. Polym. Mater. 3, 1426–1435 (2021).
Google Scholar
Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv. Mater. 25, 904–909 (2013).
Google Scholar
Fischer, J. et al. Exploring the mechanisms in sted-enhanced direct laser writing. Adv. Opt. Mater. 3, 221–232 (2015).
Google Scholar
Gan, Z., Cao, Y., Jia, B. & Gu, M. Dynamic modeling of superresolution photoinduced-inhibition nanolithography. Opt. Express 20, 16871–16879 (2012).
Google Scholar
Gleeson, M. R. & Sheridan, J. T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling. J. Opt. Soc. Am. B 26, 1736–1745 (2009).
Google Scholar
Gleeson, M. R., Liu, S., McLeod, R. R. & Sheridan, J. T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation. J. Opt. Soc. Am. B 26, 1746–1754 (2009).
Google Scholar
Amirzadeh, G. & Schnabel, W. On the photoinitiation of free radical polymerization‐laser flash photolysis investigations on thioxanthone derivatives. Macromol. Chem. Phys. 182, 2821–2835 (1981).
Google Scholar
Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).
Google Scholar
Diamantopoulou, M., Karathanasopoulos, N. & Mohr, D. Stress–strain response of polymers made through two-photon lithography: micro-scale experiments and neural network modeling. Addit. Manuf. 47, 102266 (2021).
Google Scholar
Zhao, M. et al. A 3D nanoscale optical disc memory with petabit capacity. Science Data Bank https://doi.org/10.57760/sciencedb.13342 (2023).