Strange IndiaStrange India


  • Reinsel, D., Gantz, J. & Rydning, J. The Digitization of the World from Edge to Core (IDC, 2018); https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.

  • Sony & Panasonic. White Paper: Archival Disc Technology (2020). Sony Corporation and Panasonic Corporation https://panasonic.cn/wp-content/uploads/2020/05/Archival-Disc-Technology-%EF%BC%9A2nd-Edition.pdf.

  • DeBoer, S. Micron and Western Digital: the future of the National Semiconductor Technology Center. Micron https://www.micron.com/about/blog/2022/august/micron-and-western-digital (2022).

  • Sarid, D. & Schechtman, B. H. A roadmap for optical data storage applications. Opt. Photon. News 18, 32–37 (2007).

    Article 

    Google Scholar 

  • Gu, M., Li, X. & Cao, Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ganic, D., Day, D. & Gu, M. Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination. Opt. Lasers Eng. 38, 433–437 (2002).

    Article 

    Google Scholar 

  • Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photon. 15, 901–907 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J., Gecevičius, M., Beresna, M. & Kazansky, P. G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wang, H. et al. 100‐layer error‐free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photon. Rev. 16, 2100563 (2022).

    Article 
    CAS 

    Google Scholar 

  • Parthenopoulos, D. A. & Rentzepis, P. M. Three-dimensional optical storage memory. Science 245, 843–845 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, E. & Rentzepis, P. M. Two-photon technology a new dimension. Nat. Photon. 2, 406–408 (2008).

    Article 
    CAS 

    Google Scholar 

  • Walker, E., Dvornikov, A., Coblentz, K., Esener, S. & Rentzepis, P. Toward terabyte two-photon 3D disk. Opt. Express 15, 12264–12276 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Day, D., Gu, M. & Smallridge, A. Use of two-photon excitation for erasable–rewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt. Lett. 24, 948–950 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kawata, Y., Ishitobi, H. & Kawata, S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt. Lett. 23, 756–758 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kallepalli, D. L. N. et al. Ultra-high density optical data storage in common transparent plastics. Sci. Rep. 6, 26163 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & McLeod, R. R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrew, T. L., Tsai, H.-Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917–921 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fischer, J. & Wegener, M. Ultrafast polymerization Inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv. Opt. Mater. 24, OP65–OP69 (2012).

    CAS 

    Google Scholar 

  • Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Chen, X. & Gu, M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size. Ultrafast Sci. 2022, 0001 (2022).

    Article 

    Google Scholar 

  • Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 7, eabe2209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, R., Leung, N. L. C. & Tang, B. Z. Aie macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 43, 4494–4562 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liaros, N. et al. Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. iScience 25, 103600 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fischer, J., Freymann, G. V. & Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gardner, T. Has HDD areal density stalled? StorageNewsletter https://www.storagenewsletter.com/2022/04/19/has-hdd-areal-density-stalled (2022).

  • Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).

    Article 
    CAS 

    Google Scholar 

  • Song, B. et al. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat. Commun. 14, 3115 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, S. et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 50, 12616–12655 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, C. et al. A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer. Polym. Chem. 6, 3634–3640 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhao, D. et al. Photopolymerization with AIE dyes for solid-state luminophores. Polym. Chem. 11, 1589–1596 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, T. et al. Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. J. Phys. Chem. A 118, 9094–9104 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, X. et al. Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv. Funct. Mater. 22, 4862–4872 (2012).

    Article 
    CAS 

    Google Scholar 

  • Sonoda, Y., Tsuzuki, S., Goto, M., Tohnai, N. & Yoshida, M. Fluorescence spectroscopic properties of nitro-substituted diphenylpolyenes: effects of intramolecular planarization and intermolecular interactions in crystals. J. Phys. Chem. A 114, 172–182 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chi, T. et al. Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution. ACS Appl. Polym. Mater. 3, 1426–1435 (2021).

    Article 
    CAS 

    Google Scholar 

  • Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv. Mater. 25, 904–909 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, J. et al. Exploring the mechanisms in sted-enhanced direct laser writing. Adv. Opt. Mater. 3, 221–232 (2015).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Gan, Z., Cao, Y., Jia, B. & Gu, M. Dynamic modeling of superresolution photoinduced-inhibition nanolithography. Opt. Express 20, 16871–16879 (2012).

    Article 
    CAS 

    Google Scholar 

  • Gleeson, M. R. & Sheridan, J. T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling. J. Opt. Soc. Am. B 26, 1736–1745 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gleeson, M. R., Liu, S., McLeod, R. R. & Sheridan, J. T. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation. J. Opt. Soc. Am. B 26, 1746–1754 (2009).

    Article 
    CAS 

    Google Scholar 

  • Amirzadeh, G. & Schnabel, W. On the photoinitiation of free radical polymerization‐laser flash photolysis investigations on thioxanthone derivatives. Macromol. Chem. Phys. 182, 2821–2835 (1981).

    Article 
    CAS 

    Google Scholar 

  • Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article 
    CAS 

    Google Scholar 

  • Diamantopoulou, M., Karathanasopoulos, N. & Mohr, D. Stress–strain response of polymers made through two-photon lithography: micro-scale experiments and neural network modeling. Addit. Manuf. 47, 102266 (2021).

    CAS 

    Google Scholar 

  • Zhao, M. et al. A 3D nanoscale optical disc memory with petabit capacity. Science Data Bank https://doi.org/10.57760/sciencedb.13342 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *