Strange IndiaStrange India


  • Kim, J. et al. Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4, 95–108 (2014).

    Article 

    Google Scholar 

  • Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bettinger, C. J. Recent advances in materials and flexible electronics for peripheral nerve interfaces. Bioelectron. Med. 4, 6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ampanozi, G. et al. Comparing fist size to heart size is not a viable technique to assess cardiomegaly. Cardiovasc. Pathol. 36, 1–5 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hammer, N. et al. Human vagus nerve branching in the cervical region. PLoS One 10, e0118006 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parvizi, J. & Kim, G. K. in High Yield Orthopaedics (eds Parvizi, J. & Kim, G. K.) 177–178 (W. B. Saunders, 2010).

  • Hanlon, J. F., Kelsey, R. J. & Forcinio, H. E. in Handbook of Package Engineering 3rd edn, 59–104 (CRC Press, 1998).

  • Trznadel, M. Thermally stimulated shrinkage forces in oriented polymers: induction time. Polymer 27, 871–876 (1986).

    Article 
    CAS 

    Google Scholar 

  • Kalkan-Sevinc, Z. S. & Strobel, C. T. Material characterization of heat shrinkable film. J. Test. Eval. 43, 1531–1539 (2015).

    Article 
    CAS 

    Google Scholar 

  • Work, R. W. A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (Araneae). J. Arachnol. 9, 299–308 (1981).

    Google Scholar 

  • Liu, Y., Shao, Z. & Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901–905 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boutry, C. & Blackledge, T. A. Wet webs work better: humidity, supercontraction and the performance of spider orb webs. J. Exp. Biol. 216, 3606–3610 (2013).

    PubMed 

    Google Scholar 

  • Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5, eaaw1066 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, Y. et al. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33, 2000713 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pang, X. et al. Ultralarge contraction directed by light-driven unlocking of prestored strain energy in linear liquid crystal polymer fibers. Adv. Funct. Mater. 30, 2002451 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ma, Y. et al. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci. Adv. 6, eabd2520 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blacklow, S. O. et al. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Mao, Q. et al. Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Mater. Des. 194, 108916 (2020).

    Article 
    CAS 

    Google Scholar 

  • Giesa, T. et al. Unraveling the molecular requirements for macroscopic silk supercontraction. ACS Nano 11, 9750–9758 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yarger, J. L., Cherry, B. R. & van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, 1707169 (2018).

    Article 

    Google Scholar 

  • Kim, H. et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane. ACS Appl. Mater. Interfaces 11, 31162–31168 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cera, L. et al. A bioinspired and hierarchically structured shape-memory material. Nat. Mater. 20, 242–249 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lang, C. et al. Nanostructured block copolymer muscles. Nat. Nanotechnol. 17, 752–758 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, S. et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cai, P. et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nat. Commun. 11, 2183 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuk, H. et al. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hubbard, A. M. et al. Hydrogel/elastomer laminates bonded via fabric interphases for stimuli-responsive actuators. Matter 1, 674–689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Harada, A. & Kamachi, M. Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    Article 
    CAS 

    Google Scholar 

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ganji, M. et al. Scaling effects on the electrochemical stimulation performance of Au, Pt, and PEDOT:PSS electrocorticography arrays. Adv. Funct. Mater. 27, 1703019 (2017).

    Article 

    Google Scholar 

  • Boehler, C. et al. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557–3578 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hukins, D. W. L., Mahomed, A. & Kukureka, S. N. Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30, 1270–1274 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffer, J. A. & Kallesøe, K. in Neural Prostheses for Restoration of Sensory and Motor Function 1st edn (eds Chapin John K. & Moxon, K. A.) 139–170 (CRC Press, 2000).

  • Song, K.-I. et al. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 11, 4195 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Urbanchek, M. G. et al. Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. BioMed Res. Int. 2016, 5726730 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vu, P. P. et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 12, eaay2857 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 3, 20200153 (2022).

    Article 
    CAS 

    Google Scholar 

  • Montgomery, M. et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16, 1038–1046 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat. Biomed. Eng. 5, 1157–1173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl Bur. Stand. A Phys. Chem. 81A, 89–96 (1977).

    Article 
    MathSciNet 
    PubMed Central 

    Google Scholar 

  • Hikima, Y., Morikawa, J. & Hashimoto, T. FT-IR image processing algorithms for in-plane orientation function and azimuth angle of uniaxially drawn polyethylene composite film. Macromolecules 44, 3950–3957 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hikima, Y., Morikawa, J. & Kazarian, S. G. Analysis of molecular orientation in polymeric spherulite using polarized micro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. Anal. Chim. Acta 1065, 79–89 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wunderlich, B. in Macromolecular Physics Vol. 3, chap. 8 (Academic Press, 1980).

  • Fan, L., Dang, Z., Nan, C.-W. & Li, M. Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim. Acta 48, 205–209 (2002).

    Article 
    CAS 

    Google Scholar 

  • Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-Balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malde, A. K. et al. An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7, 4026–4037 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stroet, M. et al. Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput. 14, 5834–5845 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asadzadeh, H., Moosavi, A. & Arghavani, J. H. The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study. Carbohydr. Polym. 237, 116124 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noro, J. et al. Catalytic activation of esterases by PEGylation for polyester synthesis. ChemCatChem 11, 2490–2499 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, W. et al. A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 116, 16529–16534 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article 
    CAS 

    Google Scholar 

  • Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sakai, Y. et al. Fabrication and structural analysis of polyrotaxane fibers and films. J. Phys. Condens. Matter 23, 284108 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Schmalbruch, H. Fiber composition of the rat sciatic nerve. Anat. Rec. 215, 71–81 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phinyomark, A., Phukpattaranont, P. & Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39, 7420–7431 (2012).

    Article 

    Google Scholar 

  • Thongpanja, S., Phinyomark, A., Phukpattaranont, P. & Limsakul, C. Mean and median frequency of EMG signal to determine muscle force based on time-dependent power spectrum. Elektron. ir Elektrotech. 19, 51–56 (2013).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *