Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).
Google Scholar
Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003).
Google Scholar
Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C. & Sing, D. K. Relative abundance constraints from high-resolution optical transmission spectroscopy of WASP-121b, and a fast model-filtering technique for accelerating retrievals. Mon. Not. R. Astron. Soc. 512, 4618–4638 (2022).
Google Scholar
Maguire, C. et al. High-resolution atmospheric retrievals of WASP-121b transmission spectroscopy with ESPRESSO: consistent relative abundance constraints across multiple epochs and instruments. Mon. Not. R. Astron. Soc. 519, 1030–1048 (2023).
Google Scholar
Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).
Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419 (2008).
Google Scholar
Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).
Google Scholar
Lothringer, J. D. et al. UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b. Nature 604, 49–52 (2022).
Google Scholar
West, R. G. et al. Three irradiated and bloated hot Jupiters:-WASP-76b, WASP-82b, and WASP-90b. Astron. Astrophys. 585, A126 (2016).
Google Scholar
Seifahrt, A., Stürmer, J., Bean, J. L. & Schwab, C. MAROON-X: a radial velocity spectrograph for the Gemini Observatory. Proc. SPIE 10702, 107026D (2018).
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049–1051 (2010).
Google Scholar
Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H- opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).
Google Scholar
Prinoth, B. et al. Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b. Nat. Astron. 6, 449–457 (2022).
Google Scholar
Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).
Google Scholar
Mahaffy, P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. J. Geophys. Res. Planets 105, 15061–15071 (2000).
Google Scholar
Wardenier, J. P., Parmentier, V., Lee, E. K. H., Line, M. R. & Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 506, 1258–1283 (2021).
Google Scholar
Pelletier, S. et al. Where is the water? Jupiter-like C/H ratio but strong H2O depletion found on τ Boötis b using SPIRou. Astron. J 162, 73 (2021).
Google Scholar
Tabernero, H. M. et al. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b. Astron. Astrophys. 646, A158 (2021).
Google Scholar
Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
Google Scholar
Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003).
Google Scholar
Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).
Google Scholar
Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).
Google Scholar
Gao, P., Wakeford, H. R., Moran, S. E. & Parmentier, V. Aerosols in exoplanet atmospheres. J. Geophys. Res. Planets 126, e2020JE006655 (2021).
Google Scholar
Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).
Google Scholar
Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).
Google Scholar
Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling. Astrophys. J. 887, 170 (2019).
Google Scholar
Liu, S.-F. et al. The formation of Jupiter’s diluted core by a giant impact. Nature 572, 355–357 (2019).
Google Scholar
Morley, C. V. et al. Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012).
Google Scholar
Savel, A. B. et al. No umbrella needed: confronting the hypothesis of iron rain on WASP-76b with post-processed general circulation models. Astrophys. J. 926, 85 (2022).
Google Scholar
Kesseli, A. Y., Snellen, I. A. G., Casasayas-Barris, N., Mollière, P. & Sánchez-López, A. An atomic spectral survey of WASP-76b: resolving chemical gradients and asymmetries. Astron. J 163, 107 (2022).
Google Scholar
Ivshina, E. S. & Winn, J. N. TESS transit timing of hundreds of hot Jupiters. Astrophys. J. Suppl. Ser. 259, 62 (2022).
Google Scholar
Fu, G. et al. The Hubble PanCET program: transit and eclipse spectroscopy of the strongly irradiated giant exoplanet WASP-76b. Astron. J 162, 108 (2021).
Google Scholar
Seifahrt, A. et al. On-sky commissioning of MAROON-X: a new precision radial velocity spectrograph for Gemini North. Proc. SPIE 11447, 114471F (2020).
Gibson, N. P. et al. Revisiting the potassium feature of WASP-31b at high resolution. Mon. Not. R. Astron. Soc. 482, 606–615 (2019).
Google Scholar
Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).
Google Scholar
Cabot, S. H. C., Madhusudhan, N., Hawker, G. A. & Gandhi, S. On the robustness of analysis techniques for molecular detections using high-resolution exoplanet spectroscopy. Mon. Not. R. Astron. Soc. 482, 4422–4436 (2019).
Google Scholar
Zhang, M., Chachan, Y., Kempton, E. M.-R., Knutson, H. A. & Chang, W. H. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).
Google Scholar
Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).
Google Scholar
Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
Google Scholar
Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).
Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).
Google Scholar
Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019).
Google Scholar
Grimm, S. L. & Heng, K. Helios-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).
Google Scholar
Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).
Google Scholar
Patrascu, A. T., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – IX. The spectrum of AlO. Mon. Not. R. Astron. Soc. 449, 3613–3619 (2015).
Google Scholar
Burrows, A., Ram, R. S., Bernath, P., Sharp, C. M. & Milsom, J. A. New CrH opacities for the study of L and brown dwarf atmospheres. Astrophys. J. 577, 986 (2002).
Google Scholar
Bernath, P. F. MoLLIST: molecular line lists, intensities and spectra. J. Quant. Spectrosc. Radiat. Transf. 240, 106687 (2020).
Google Scholar
Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K–H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).
Google Scholar
Allard, N. F., Spiegelman, F., Leininger, T. & Molliere, P. New study of the line profiles of sodium perturbed by H2. Astron. Astrophys. 628, A120 (2019).
Google Scholar
McKemmish, L. K. et al. ExoMol molecular line lists – XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).
Google Scholar
McKemmish, L. K., Yurchenko, S. N. & Tennyson, J. ExoMol line lists – XVIII. The high-temperature spectrum of VO. Mon. Not. R. Astron. Soc. 463, 771–793 (2016).
Google Scholar
Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).
Google Scholar
Kurucz, R. L. Including all the lines: data releases for spectra and opacities. Can. J. Phys. 95, 825–827 (2017).
Google Scholar
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database. https://physics.nist.gov/asd (National Institute of Standards and Technology, 2009).
Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).
Google Scholar
Bell, K. L. & Berrington, K. A. Free-free absorption coefficient of the negative hydrogen ion. J. Phys. B Atom. Mol. Phys. 20, 801–806 (1987).
Google Scholar
John, T. L. Continuous absorption by the negative hydrogen ion reconsidered. Astron. Astrophys. 193, 189–192 (1988).
Google Scholar
Stock, J. W., Kitzmann, D. & Patzer, A. B. C. FastChem 2: an improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Mon. Not. R. Astron. Soc. 517, 4070–4080 (2022).
Google Scholar
Seidel, J. V. et al. Into the storm: diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO. Astron. Astrophys. 653, A73 (2021).
Google Scholar
Casasayas-Barris, N. et al. The atmosphere of HD 209458b seen with ESPRESSO – no detectable planetary absorptions at high resolution. Astron. Astrophys. 647, A26 (2021).
Google Scholar
Gandhi, S. et al. Spatially resolving the terminator: variation of Fe, temperature, and winds in WASP-76 b across planetary limbs and orbital phase. Mon. Not. R. Astron. Soc. 515, 749–766 (2022).
Google Scholar
Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J 157, 114 (2019).
Google Scholar
Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Google Scholar
Essen, C. V. et al. HST/STIS transmission spectrum of the ultra-hot Jupiter WASP-76 b confirms the presence of sodium in its atmosphere. Astron. Astrophys. 637, A76 (2020).
Google Scholar
Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS) – IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astron. Astrophys. 641, A123 (2020).
Google Scholar
Pluriel, W. et al. Toward a multidimensional analysis of transmission spectroscopy – II. Day-night-induced biases in retrievals from hot to ultrahot Jupiters. Astron. Astrophys. 658, A42 (2022).
Google Scholar
Landman, R. et al. Detection of OH in the ultra-hot Jupiter WASP-76b. Astron. Astrophys. 656, A119 (2021).
Google Scholar
May, E. M. et al. Spitzer phase-curve observations and circulation models of the inflated ultrahot Jupiter WASP-76b. Astron. J 162, 158 (2021).
Google Scholar
Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).
Google Scholar
Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011 (2003).
Google Scholar
Evans, T. M. et al. Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. Astrophys. J. 822, L4 (2016).
Google Scholar
Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).
Google Scholar
Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J 156, 283 (2018).
Google Scholar
Mikal-Evans, T. et al. An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 488, 2222–2234 (2019).
Google Scholar
Mikal-Evans, T. et al. Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 496, 1638–1644 (2020).
Google Scholar
Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).
Google Scholar
Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).
Google Scholar
Merritt, S. R. et al. Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astron. Astrophys. 636, A117 (2020).
Google Scholar
Regt, S., de, Kesseli, A. Y., Snellen, I. A. G., Merritt, S. R. & Chubb, K. L. A quantitative assessment of the VO line list: inaccuracies hamper high-resolution VO detections in exoplanet atmospheres. Astron. Astrophys. 661, A109 (2022).
Google Scholar
Pepe, F. et al. ESPRESSO at VLT—on-sky performance and first results. Astron. Astrophys. 645, A96 (2021).
Google Scholar
Beltz, H. et al. Magnetic drag and 3D effects in theoretical high-resolution emission spectra of ultrahot Jupiters: the case of WASP-76b. Astron. J 164, 140 (2022).
Google Scholar
Scott, E. R. D. Iron meteorites: composition, age, and origin. Oxford Research Encyclopedia of Planetary Science https://doi.org/10.1093/acrefore/9780190647926.013.206 (2020).
Nittler, L. R., Chabot, N. L., Grove, T. L. & Peplowski, P. N. in Mercury: The View after MESSENGER (eds Anderson, B. J., Nittler, L. R. & Solomon, S. C.) 30–51 (Cambridge Univ. Press, 2018).
Weisberg, M. K. et al. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 19–52 (Univ. Arizona Press, 2006).
Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).
Google Scholar
Debras, F. & Chabrier, G. New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019).
Google Scholar
Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).
Google Scholar
The Astropy Collaboration et al.Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Google Scholar
Astropy Collaboration, T. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J 156, 123 (2018).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar