Strange India All Strange Things About India and world


  • Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C. & Sing, D. K. Relative abundance constraints from high-resolution optical transmission spectroscopy of WASP-121b, and a fast model-filtering technique for accelerating retrievals. Mon. Not. R. Astron. Soc. 512, 4618–4638 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maguire, C. et al. High-resolution atmospheric retrievals of WASP-121b transmission spectroscopy with ESPRESSO: consistent relative abundance constraints across multiple epochs and instruments. Mon. Not. R. Astron. Soc. 519, 1030–1048 (2023).

    Article 
    ADS 

    Google Scholar 

  • Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lothringer, J. D. et al. UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b. Nature 604, 49–52 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • West, R. G. et al. Three irradiated and bloated hot Jupiters:-WASP-76b, WASP-82b, and WASP-90b. Astron. Astrophys. 585, A126 (2016).

    Article 

    Google Scholar 

  • Seifahrt, A., Stürmer, J., Bean, J. L. & Schwab, C. MAROON-X: a radial velocity spectrograph for the Gemini Observatory. Proc. SPIE 10702, 107026D (2018).

    Google Scholar 

  • Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049–1051 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H- opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).

    Article 
    ADS 

    Google Scholar 

  • Prinoth, B. et al. Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b. Nat. Astron. 6, 449–457 (2022).

    Article 
    ADS 

    Google Scholar 

  • Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mahaffy, P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. J. Geophys. Res. Planets 105, 15061–15071 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wardenier, J. P., Parmentier, V., Lee, E. K. H., Line, M. R. & Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 506, 1258–1283 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pelletier, S. et al. Where is the water? Jupiter-like C/H ratio but strong H2O depletion found on τ Boötis b using SPIRou. Astron. J 162, 73 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tabernero, H. M. et al. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b. Astron. Astrophys. 646, A158 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Article 

    Google Scholar 

  • Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gao, P., Wakeford, H. R., Moran, S. E. & Parmentier, V. Aerosols in exoplanet atmospheres. J. Geophys. Res. Planets 126, e2020JE006655 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grossman, L. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    Article 
    ADS 

    Google Scholar 

  • Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling. Astrophys. J. 887, 170 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, S.-F. et al. The formation of Jupiter’s diluted core by a giant impact. Nature 572, 355–357 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Morley, C. V. et al. Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012).

    Article 
    ADS 

    Google Scholar 

  • Savel, A. B. et al. No umbrella needed: confronting the hypothesis of iron rain on WASP-76b with post-processed general circulation models. Astrophys. J. 926, 85 (2022).

    Article 
    ADS 

    Google Scholar 

  • Kesseli, A. Y., Snellen, I. A. G., Casasayas-Barris, N., Mollière, P. & Sánchez-López, A. An atomic spectral survey of WASP-76b: resolving chemical gradients and asymmetries. Astron. J 163, 107 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ivshina, E. S. & Winn, J. N. TESS transit timing of hundreds of hot Jupiters. Astrophys. J. Suppl. Ser. 259, 62 (2022).

    Article 
    ADS 

    Google Scholar 

  • Fu, G. et al. The Hubble PanCET program: transit and eclipse spectroscopy of the strongly irradiated giant exoplanet WASP-76b. Astron. J 162, 108 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Seifahrt, A. et al. On-sky commissioning of MAROON-X: a new precision radial velocity spectrograph for Gemini North. Proc. SPIE 11447, 114471F (2020).

    Google Scholar 

  • Gibson, N. P. et al. Revisiting the potassium feature of WASP-31b at high resolution. Mon. Not. R. Astron. Soc. 482, 606–615 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cabot, S. H. C., Madhusudhan, N., Hawker, G. A. & Gandhi, S. On the robustness of analysis techniques for molecular detections using high-resolution exoplanet spectroscopy. Mon. Not. R. Astron. Soc. 482, 4422–4436 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, M., Chachan, Y., Kempton, E. M.-R., Knutson, H. A. & Chang, W. H. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article 
    ADS 

    Google Scholar 

  • Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article 
    ADS 

    Google Scholar 

  • Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).

  • Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).

    Article 
    ADS 

    Google Scholar 

  • Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grimm, S. L. & Heng, K. Helios-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).

    Article 
    ADS 

    Google Scholar 

  • Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Patrascu, A. T., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – IX. The spectrum of AlO. Mon. Not. R. Astron. Soc. 449, 3613–3619 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Burrows, A., Ram, R. S., Bernath, P., Sharp, C. M. & Milsom, J. A. New CrH opacities for the study of L and brown dwarf atmospheres. Astrophys. J. 577, 986 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bernath, P. F. MoLLIST: molecular line lists, intensities and spectra. J. Quant. Spectrosc. Radiat. Transf. 240, 106687 (2020).

    Article 
    CAS 

    Google Scholar 

  • Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K–H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).

    Article 
    ADS 

    Google Scholar 

  • Allard, N. F., Spiegelman, F., Leininger, T. & Molliere, P. New study of the line profiles of sodium perturbed by H2. Astron. Astrophys. 628, A120 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McKemmish, L. K. et al. ExoMol molecular line lists – XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McKemmish, L. K., Yurchenko, S. N. & Tennyson, J. ExoMol line lists – XVIII. The high-temperature spectrum of VO. Mon. Not. R. Astron. Soc. 463, 771–793 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    Article 
    ADS 

    Google Scholar 

  • Kurucz, R. L. Including all the lines: data releases for spectra and opacities. Can. J. Phys. 95, 825–827 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database. https://physics.nist.gov/asd (National Institute of Standards and Technology, 2009).

  • Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).

    Article 
    ADS 

    Google Scholar 

  • Bell, K. L. & Berrington, K. A. Free-free absorption coefficient of the negative hydrogen ion. J. Phys. B Atom. Mol. Phys. 20, 801–806 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • John, T. L. Continuous absorption by the negative hydrogen ion reconsidered. Astron. Astrophys. 193, 189–192 (1988).

    ADS 
    CAS 

    Google Scholar 

  • Stock, J. W., Kitzmann, D. & Patzer, A. B. C. FastChem 2: an improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Mon. Not. R. Astron. Soc. 517, 4070–4080 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Seidel, J. V. et al. Into the storm: diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO. Astron. Astrophys. 653, A73 (2021).

    Article 
    CAS 

    Google Scholar 

  • Casasayas-Barris, N. et al. The atmosphere of HD 209458b seen with ESPRESSO – no detectable planetary absorptions at high resolution. Astron. Astrophys. 647, A26 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gandhi, S. et al. Spatially resolving the terminator: variation of Fe, temperature, and winds in WASP-76 b across planetary limbs and orbital phase. Mon. Not. R. Astron. Soc. 515, 749–766 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J 157, 114 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar 

  • Essen, C. V. et al. HST/STIS transmission spectrum of the ultra-hot Jupiter WASP-76 b confirms the presence of sodium in its atmosphere. Astron. Astrophys. 637, A76 (2020).

    Article 

    Google Scholar 

  • Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS) – IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astron. Astrophys. 641, A123 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pluriel, W. et al. Toward a multidimensional analysis of transmission spectroscopy – II. Day-night-induced biases in retrievals from hot to ultrahot Jupiters. Astron. Astrophys. 658, A42 (2022).

    Article 
    CAS 

    Google Scholar 

  • Landman, R. et al. Detection of OH in the ultra-hot Jupiter WASP-76b. Astron. Astrophys. 656, A119 (2021).

    Article 
    CAS 

    Google Scholar 

  • May, E. M. et al. Spitzer phase-curve observations and circulation models of the inflated ultrahot Jupiter WASP-76b. Astron. J 162, 158 (2021).

    Article 
    ADS 

    Google Scholar 

  • Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Evans, T. M. et al. Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. Astrophys. J. 822, L4 (2016).

    Article 
    ADS 

    Google Scholar 

  • Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J 156, 283 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mikal-Evans, T. et al. An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 488, 2222–2234 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mikal-Evans, T. et al. Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 496, 1638–1644 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Merritt, S. R. et al. Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astron. Astrophys. 636, A117 (2020).

    Article 
    CAS 

    Google Scholar 

  • Regt, S., de, Kesseli, A. Y., Snellen, I. A. G., Merritt, S. R. & Chubb, K. L. A quantitative assessment of the VO line list: inaccuracies hamper high-resolution VO detections in exoplanet atmospheres. Astron. Astrophys. 661, A109 (2022).

    Article 

    Google Scholar 

  • Pepe, F. et al. ESPRESSO at VLT—on-sky performance and first results. Astron. Astrophys. 645, A96 (2021).

    Article 
    CAS 

    Google Scholar 

  • Beltz, H. et al. Magnetic drag and 3D effects in theoretical high-resolution emission spectra of ultrahot Jupiters: the case of WASP-76b. Astron. J 164, 140 (2022).

    Article 
    ADS 

    Google Scholar 

  • Scott, E. R. D. Iron meteorites: composition, age, and origin. Oxford Research Encyclopedia of Planetary Science https://doi.org/10.1093/acrefore/9780190647926.013.206 (2020).

  • Nittler, L. R., Chabot, N. L., Grove, T. L. & Peplowski, P. N. in Mercury: The View after MESSENGER (eds Anderson, B. J., Nittler, L. R. & Solomon, S. C.) 30–51 (Cambridge Univ. Press, 2018).

  • Weisberg, M. K. et al. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 19–52 (Univ. Arizona Press, 2006).

  • Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).

    Article 
    ADS 

    Google Scholar 

  • Debras, F. & Chabrier, G. New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).

    Article 
    ADS 

    Google Scholar 

  • The Astropy Collaboration et al.Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar 

  • Astropy Collaboration, T. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J 156, 123 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *