Duren, R. M. et al. California’s methane super-emitters. Nature 575, 180–184 (2019).
Google Scholar
Cusworth, D. H. et al. Intermittency of large methane emitters in the Permian Basin. Environ. Sci. Technol. Lett. 8, 567–573 (2021).
Google Scholar
Cusworth, D. H. et al. Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States. Proc. Natl Acad. Sci. USA 119, e2202338119 (2022).
Google Scholar
Frankenberg, C. et al. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl Acad. Sci. USA 113, 9734–9739 (2016).
Google Scholar
US Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020; www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020 (2022).
Yarmuth, J. A. Inflation Reduction Act of 2022, H.R.5376, Public Law No. 117–169, https://www.congress.gov/bill/117th-congress/house-bill/5376/text (2022).
Brandt, A. R. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014).
Google Scholar
Conrad, B. M., Tyner, D. R., Li, H. Z., Xie, D. & Johnson, M. R. A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates. Commun. Earth Environ. 4, 416 (2023).
Google Scholar
US Environmental Protection Agency. Methodology Report: Inventory of U.S. Greenhouse Gas Emissions and Sinks by State: 1990–2020; https://www.epa.gov/ghgemissions/methodology-report-inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-2020 (2023).
Johnson, M. R., Conrad, B. M. & Tyner, D. R. Creating measurement-based oil and gas sector methane inventories using source-resolved aerial surveys. Commun. Earth Environ. 4, 139 (2023).
Google Scholar
Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).
Carras, J. N. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 4 (2006).
Irakulis-Loitxate, I. et al. Satellite-based survey of extreme methane emissions in the Permian basin. Sci. Adv. 7, eabf4507 (2021).
Google Scholar
Chen, Y. et al. Quantifying regional methane emissions in the New Mexico Permian Basin with a comprehensive aerial survey. Environ. Sci. Technol. 56, 4317–4323 (2022).
Google Scholar
Varon, D. J. et al. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 46, 13507–13516 (2019).
Google Scholar
Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).
Google Scholar
Lauvaux, T. et al. Global assessment of oil and gas methane ultra-emitters. Science 375, 557–561 (2022).
Google Scholar
Rutherford, J. S. et al. Closing the methane gap in US oil and natural gas production emissions inventories. Nat. Commun. 12, 4715 (2021).
Google Scholar
Kunkel, W. M. et al. Extension of methane emission rate distribution for Permian Basin oil and gas production infrastructure by aerial LiDAR. Environ. Sci. Technol. 57, 12234–12241 (2023).
Sherwin, E. D., Chen, Y., Ravikumar, A. P. & Brandt, A. R. Single-blind test of airplane-based hyperspectral methane detection via controlled releases. Elementa (Wash. D. C.) 9, 00063 (2021).
Jacob, D. J. et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 22, 9617–9646 (2022).
Google Scholar
Bell, C. et al. Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR. Elementa (Wash. D. C.) 10, 00080 (2022).
Sherwin, E. D. et al. Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Sci. Rep. 13, 3836 (2023).
Google Scholar
Sherwin, E. D. et al. Single-blind test of nine methane-sensing satellite systems from three continents. Atmospheric Meas. Tech. 70, 765–782 (2024).
US Environmental Protection Agency. State GHG Emissions and Removals; www.epa.gov/ghgemissions/state-ghg-emissions-and-removals (2022).
Omara, M. et al. Methane emissions from US low production oil and natural gas well sites. Nat. Commun. 13, 2085 (2022).
Google Scholar
Brandt, A. R., Heath, G. A. & Cooley, D. Methane leaks from natural gas systems follow extreme distributions. Environ. Sci. Technol. 50, 12512–12520 (2016).
Google Scholar
Crippa, M. et al. Fossil CO2 and GHG emissions of all world countries: 2019 report (Publications Office of the European Union, 2019).
Masson-Delmotte, V. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Omara, M. et al. Methane emissions from natural gas production sites in the United States: data synthesis and national estimate. Environ. Sci. Technol. 52, 12915–12925 (2018).
Google Scholar
Peischl, J. et al. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. 120, 2119–2139 (2015).
Google Scholar
Pétron, G. et al. A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin: hydrocarbon emissions in oil & gas basin. J. Geophys. Res. Atmos. 119, 6836–6852 (2014).
Google Scholar
Barkley, Z. R. et al. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania. Atmos. Chem. Phys. 17, 13941–13966 (2017).
Google Scholar
Peischl, J. et al. Quantifying methane and ethane emissions to the atmosphere from central and western U.S. oil and natural gas production regions. J. Geophys. Res. Atmos. 123, 7725–7740 (2018).
Google Scholar
Fried, A. & Dickerson, R. Interim Report on Proposal Activities and No-Cost Extension Request: Continuous Airborne Measurements and Analysis of Oil & Natural Gas Emissions During the 2021 Denver-Julesburg Basin Studies. Prepared for the Colorado Oil and Gas Conservation Commission and the Colorado Air Pollution Control; https://apcd.state.co.us/aqidev/tech_doc_repository.aspx?action=open%26file=CU_UMD_2021_Final_Report.pdf (2022).
Lin, J. C. et al. Declining methane emissions and steady, high leakage rates observed over multiple years in a western US oil/gas production basin. Sci. Rep. 11, 22291 (2021).
Google Scholar
Zhang, Y. et al. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Sci. Adv. 6, eaaz5120 (2020).
Google Scholar
Schneising, O. et al. Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmos. Chem. Phys. 20, 9169–9182 (2020).
Google Scholar
Fox, T. A., Gao, M., Barchyn, T. E., Jamin, Y. L. & Hugenholtz, C. H. An agent-based model for estimating emissions reduction equivalence among leak detection and repair programs. J. Clean. Prod. 282, 125237 (2021).
Google Scholar
Kemp, C. E. & Ravikumar, A. P. New technologies can cost effectively reduce oil and gas methane emissions, but policies will require careful design to establish mitigation equivalence. Environ. Sci. Technol. 55, 9140–9149 (2021).
US Environmental Protection Agency. Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review; https://www.federalregister.gov/documents/2021/11/15/2021-24202/standards-of-performance-for-new-reconstructed-and-modified-sources-and-emissions-guidelines-for (2022).
Cusworth, D. H. Methane plumes for NASA/JPL/UArizona/ASU Sep–Nov 2019 Permian campaign. Zenodo https://doi.org/10.5281/zenodo.5610307 (2021).
Cusworth, D. et al. Methane plumes from airborne surveys 2020–2021 (1.0). Zenodo https://doi.org/10.5281/zenodo.5606120 (2021).
Berman, E. S. F., Wetherley, E. B. & Jones, B. B. Kairos Aerospace Technical White Paper: Methane Detection (Version 1F); https://doi.org/10.17605/OSF.IO/HZG52 (2023).
Thorpe, A. K. et al. Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sens. Environ. 179, 104–115 (2016).
Google Scholar
El Abbadi, S. et al. Comprehensive evaluation of aircraft-based methane sensing for greenhouse gas mitigation. Preprint at eartharxiv.org/repository/view/5569/ (2023).
Branson, K., Jones, B. B. & Berman, E. S. F. Kairos Aerospace Methane Emissions Quantification; https://doi.org/10.17605/OSF.IO/2UNWQ (2021).
Thorpe, A. K., Frankenberg, C. & Roberts, D. A. Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS. Atmos. Meas. Tech. 7, 491–506 (2014).
Google Scholar
Robertson, A. M. et al. New Mexico Permian Basin measured well pad methane emissions are a factor of 5–9 times higher than U.S. EPA estimates. Environ. Sci. Technol. 54, 13926–13934 (2020).
Google Scholar
Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Science+Business Media, 2004).
KairosAerospace/stanford_fort_worth_data_2021: v1.0. Zenodo https://doi.org/10.5281/zenodo.8302419 (2023).
KairosAerospace/stanford_nm_data_2019: v1.0. Zenodo https://zenodo.org/records/10067753 (2023).
Sherwin, E. D. & Zhang, Z. Data and code for “US oil and gas system emissions from nearly one million aerial site measurements”. Zenodo https://zenodo.org/records/10064774 (2023).
JSRuthe/BU_methane_model: Release for distributions paper. Zenodo https://zenodo.org/records/10073882 (2023).