Strange IndiaStrange India


  • Duren, R. M. et al. California’s methane super-emitters. Nature 575, 180–184 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cusworth, D. H. et al. Intermittency of large methane emitters in the Permian Basin. Environ. Sci. Technol. Lett. 8, 567–573 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cusworth, D. H. et al. Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States. Proc. Natl Acad. Sci. USA 119, e2202338119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frankenberg, C. et al. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl Acad. Sci. USA 113, 9734–9739 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • US Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020; www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020 (2022).

  • Yarmuth, J. A. Inflation Reduction Act of 2022, H.R.5376, Public Law No. 117–169, https://www.congress.gov/bill/117th-congress/house-bill/5376/text (2022).

  • Brandt, A. R. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Conrad, B. M., Tyner, D. R., Li, H. Z., Xie, D. & Johnson, M. R. A measurement-based upstream oil and gas methane inventory for Alberta, Canada reveals higher emissions and different sources than official estimates. Commun. Earth Environ. 4, 416 (2023).

    Article 
    ADS 

    Google Scholar 

  • US Environmental Protection Agency. Methodology Report: Inventory of U.S. Greenhouse Gas Emissions and Sinks by State: 1990–2020; https://www.epa.gov/ghgemissions/methodology-report-inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-2020 (2023).

  • Johnson, M. R., Conrad, B. M. & Tyner, D. R. Creating measurement-based oil and gas sector methane inventories using source-resolved aerial surveys. Commun. Earth Environ. 4, 139 (2023).

    Article 
    ADS 

    Google Scholar 

  • Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).

  • Carras, J. N. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 4 (2006).

  • Irakulis-Loitxate, I. et al. Satellite-based survey of extreme methane emissions in the Permian basin. Sci. Adv. 7, eabf4507 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. Quantifying regional methane emissions in the New Mexico Permian Basin with a comprehensive aerial survey. Environ. Sci. Technol. 56, 4317–4323 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Varon, D. J. et al. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 46, 13507–13516 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lauvaux, T. et al. Global assessment of oil and gas methane ultra-emitters. Science 375, 557–561 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rutherford, J. S. et al. Closing the methane gap in US oil and natural gas production emissions inventories. Nat. Commun. 12, 4715 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunkel, W. M. et al. Extension of methane emission rate distribution for Permian Basin oil and gas production infrastructure by aerial LiDAR. Environ. Sci. Technol. 57, 12234–12241 (2023).

  • Sherwin, E. D., Chen, Y., Ravikumar, A. P. & Brandt, A. R. Single-blind test of airplane-based hyperspectral methane detection via controlled releases. Elementa (Wash. D. C.) 9, 00063 (2021).

    Google Scholar 

  • Jacob, D. J. et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 22, 9617–9646 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bell, C. et al. Single-blind determination of methane detection limits and quantification accuracy using aircraft-based LiDAR. Elementa (Wash. D. C.) 10, 00080 (2022).

    Google Scholar 

  • Sherwin, E. D. et al. Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Sci. Rep. 13, 3836 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherwin, E. D. et al. Single-blind test of nine methane-sensing satellite systems from three continents. Atmospheric Meas. Tech. 70, 765–782 (2024).

  • US Environmental Protection Agency. State GHG Emissions and Removals; www.epa.gov/ghgemissions/state-ghg-emissions-and-removals (2022).

  • Omara, M. et al. Methane emissions from US low production oil and natural gas well sites. Nat. Commun. 13, 2085 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, A. R., Heath, G. A. & Cooley, D. Methane leaks from natural gas systems follow extreme distributions. Environ. Sci. Technol. 50, 12512–12520 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Crippa, M. et al. Fossil CO2 and GHG emissions of all world countries: 2019 report (Publications Office of the European Union, 2019).

  • Masson-Delmotte, V. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  • Omara, M. et al. Methane emissions from natural gas production sites in the United States: data synthesis and national estimate. Environ. Sci. Technol. 52, 12915–12925 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peischl, J. et al. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. 120, 2119–2139 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pétron, G. et al. A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin: hydrocarbon emissions in oil & gas basin. J. Geophys. Res. Atmos. 119, 6836–6852 (2014).

    Article 
    ADS 

    Google Scholar 

  • Barkley, Z. R. et al. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania. Atmos. Chem. Phys. 17, 13941–13966 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Peischl, J. et al. Quantifying methane and ethane emissions to the atmosphere from central and western U.S. oil and natural gas production regions. J. Geophys. Res. Atmos. 123, 7725–7740 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fried, A. & Dickerson, R. Interim Report on Proposal Activities and No-Cost Extension Request: Continuous Airborne Measurements and Analysis of Oil & Natural Gas Emissions During the 2021 Denver-Julesburg Basin Studies. Prepared for the Colorado Oil and Gas Conservation Commission and the Colorado Air Pollution Control; https://apcd.state.co.us/aqidev/tech_doc_repository.aspx?action=open%26file=CU_UMD_2021_Final_Report.pdf (2022).

  • Lin, J. C. et al. Declining methane emissions and steady, high leakage rates observed over multiple years in a western US oil/gas production basin. Sci. Rep. 11, 22291 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Sci. Adv. 6, eaaz5120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneising, O. et al. Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmos. Chem. Phys. 20, 9169–9182 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fox, T. A., Gao, M., Barchyn, T. E., Jamin, Y. L. & Hugenholtz, C. H. An agent-based model for estimating emissions reduction equivalence among leak detection and repair programs. J. Clean. Prod. 282, 125237 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kemp, C. E. & Ravikumar, A. P. New technologies can cost effectively reduce oil and gas methane emissions, but policies will require careful design to establish mitigation equivalence. Environ. Sci. Technol. 55, 9140–9149 (2021).

  • US Environmental Protection Agency. Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review; https://www.federalregister.gov/documents/2021/11/15/2021-24202/standards-of-performance-for-new-reconstructed-and-modified-sources-and-emissions-guidelines-for (2022).

  • Cusworth, D. H. Methane plumes for NASA/JPL/UArizona/ASU Sep–Nov 2019 Permian campaign. Zenodo https://doi.org/10.5281/zenodo.5610307 (2021).

  • Cusworth, D. et al. Methane plumes from airborne surveys 2020–2021 (1.0). Zenodo https://doi.org/10.5281/zenodo.5606120 (2021).

  • Berman, E. S. F., Wetherley, E. B. & Jones, B. B. Kairos Aerospace Technical White Paper: Methane Detection (Version 1F); https://doi.org/10.17605/OSF.IO/HZG52 (2023).

  • Thorpe, A. K. et al. Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sens. Environ. 179, 104–115 (2016).

    Article 
    ADS 

    Google Scholar 

  • El Abbadi, S. et al. Comprehensive evaluation of aircraft-based methane sensing for greenhouse gas mitigation. Preprint at eartharxiv.org/repository/view/5569/ (2023).

  • Branson, K., Jones, B. B. & Berman, E. S. F. Kairos Aerospace Methane Emissions Quantification; https://doi.org/10.17605/OSF.IO/2UNWQ (2021).

  • Thorpe, A. K., Frankenberg, C. & Roberts, D. A. Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS. Atmos. Meas. Tech. 7, 491–506 (2014).

    Article 

    Google Scholar 

  • Robertson, A. M. et al. New Mexico Permian Basin measured well pad methane emissions are a factor of 5–9 times higher than U.S. EPA estimates. Environ. Sci. Technol. 54, 13926–13934 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Science+Business Media, 2004).

  • KairosAerospace/stanford_fort_worth_data_2021: v1.0. Zenodo https://doi.org/10.5281/zenodo.8302419 (2023).

  • KairosAerospace/stanford_nm_data_2019: v1.0. Zenodo https://zenodo.org/records/10067753 (2023).

  • Sherwin, E. D. & Zhang, Z. Data and code for “US oil and gas system emissions from nearly one million aerial site measurements”. Zenodo https://zenodo.org/records/10064774 (2023).

  • JSRuthe/BU_methane_model: Release for distributions paper. Zenodo https://zenodo.org/records/10073882 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *