Strange IndiaStrange India


  • 1.

    Lieberman, B. & Gordon, E. Climate Change in Human History: Prehistory to the Present (Bloomsbury, 2018).

  • 2.

    White, S., Pfister, C. & Mauelshagen, F. (eds) The Palgrave Handbook of Climate History (Palgrave Macmillan, 2018). This edited volume provides a state-of-the-art survey of scholarship in palaeoclimatology, historical climatology and climate history, a field that partly overlaps with HCS.

  • 3.

    Ladurie, E. L. R. Abrégé d’Histoire du Climat: du Moyen Âge à Nos Jours (Fayard, 2007).

  • 4.

    Brooke, J. Climate Change and the Course of Global History: A Rough Journey (Cambridge, 2015).

  • 5.

    Linden, E. The Winds of Change: Climate, Weather, and the Destruction of Civilizations (Simon and Schuster, 2006).

  • 6.

    Behringer, W. A Cultural History of Climate (Polity, 2010).

  • 7.

    White, S. The Climate of Rebellion in the Early Modern Ottoman Empire (Cambridge Univ. Press, 2011).

  • 8.

    Parker, G. Global Crisis: War, Climate Change and Catastrophe in the Seventeenth Century (Yale Univ. Press, 2013). This is perhaps the most influential and ambitious qualitative study in HCS that links the LIA to harvest failures, famines, epidemics, and violence within and between societies.

  • 9.

    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016). This article by a consilient team coined the term ‘Late Antique Little Ice Age’, and links its purported cooling to crises endured by societies in the sixth century ad.

    ADS 

    Google Scholar 

  • 10.

    Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe. Clim. Past 12, 2107–2126 (2016).

    Google Scholar 

  • 11.

    Campbell, B. The Great Transition: Climate, Disease, and Society in the Late-Medieval World (Cambridge Univ. Press, 2016). This book is one of the most sophisticated attempts to identify disastrous effects of the LIA on European societies, but uses a reconstruction of the North Atlantic Oscillation that has now been fundamentally updated.

  • 12.

    White, S. A Cold Welcome: The Little Ice Age and Europe’s Encounter with North America (Harvard Univ.y Press, 2017).

  • 13.

    Skopyk, B. Colonial Cataclysms: Climate, Landscape, and Memory in Mexico’s Little Ice Age (Univ. of Arizona Press, 2020).

  • 14.

    Weiss, H. et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993). This seminal article introduces a particularly convincing example of a city and civilization that allegedly collapsed amid a decades-long drought.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Gill, R. B. The Great Maya Droughts: Water, Life, and Death (Univ. of New Mexico Press, 2000).

  • 17.

    Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Diamond, J. Collapse: How Societies Choose to Fail or Succeed, revised edn (Oxford Univ. Press, 2011). This influential book introduced a popular audience to the concept that societies collapsed when faced with pre-industrial climate changes, including those of the LIA.

  • 19.

    McAnany, P. A. & Yoffee, N. (eds) Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire (Cambridge Univ. Press, 2010).

  • 20.

    Li, Z. et al. Drought promoted the disappearance of civilizations along the ancient silk road. Environ. Earth Sci. 75, 1116 (2016).

    Google Scholar 

  • 21.

    Weiss, H. (ed.) Megadrought and Collapse: From Early Agriculture to Angkor (Oxford Univ. Press, 2017).

  • 22.

    Holm, P. & Winiwarter, V. Climate change studies and the human sciences. Global Planet. Change 156, 115–122 (2017).

    ADS 

    Google Scholar 

  • 23.

    Hambrecht, G. et al. Archaeological sites as distributed long-term observing networks of the past (DONOP). Quat. Int. 549, 218–226 (2020).

    Google Scholar 

  • 24.

    Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. Wiley Interdiscip. Rev. Clim. Change, https://doi.org/10.1002/wcc.691 (2020). This study surveys 165 studies in European HCS and helped us to build the database that we used to create Fig. 2.

  • 25.

    White, S. The real Little Ice Age. J. Interdiscip. Hist. 44, 327–352 (2013).

    Google Scholar 

  • 26.

    Brückner, E. Der Einfluß der Klimaschwankungen auf die Ernteerträge und Getreidepreise in Europa. Geogr. Z. 1, 39–51, 100–108 (1895).

    Google Scholar 

  • 27.

    Beveridge, W. H. Weather and harvest cycles. Econ. J. (Lond.) 31, 429–452 (1921).

    Google Scholar 

  • 28.

    Beveridge, W. H. Wheat prices and rainfall in western Europe. J. R. Stat. Soc. 85, 412–475 (1922).

    Google Scholar 

  • 29.

    Douglass, A. E. A method of estimating rainfall by the growth of trees. Bull. Am. Geogr. Soc. 46, 321–335 (1914).

    Google Scholar 

  • 30.

    Huntington, E. Changes of climate and history. Am. Hist. Rev. 18, 213–232 (1913).

    Google Scholar 

  • 31.

    Huntington, E. Civilization and Climate (Yale Univ. Press, 1917).

  • 32.

    Huntington, E. Climatic change and agricultural exhaustion as elements in the fall of Rome. Q. J. Econ. 31, 173–208 (1917).

    Google Scholar 

  • 33.

    Martin, G. Ellsworth Huntington: His Life and Thought (Archon, 1973).

  • 34.

    Le Roy Ladurie, E. Histoire du Climat Depuis l’An Mil (Flammarion, 1967).

  • 35.

    Pfister, C. Climate and economy in eighteenth-century Switzerland. J. Interdiscip. Hist. 9, 223–243 (1978).

    Google Scholar 

  • 36.

    de Vries, J. Measuring the impact of climate on history: the search for appropriate methodologies. J. Interdiscip. Hist. 10, 599–630 (1980).

    Google Scholar 

  • 37.

    Carey, M. Climate and history: a critical review of historical climatology and climate change historiography. Wiley Interdiscip. Rev. Clim. Change 3, 233–249 (2012).

    Google Scholar 

  • 38.

    Izdebski, A., Mordechai, L. & White, S. The social burden of resilience: a historical perspective. Hum. Ecol. Interdiscip. J. 46, 291–303 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hegmon, M. et al. Social transformation and its human costs in the prehispanic U.S. southwest. Am. Anthropol. 110, 313–324 (2008).

    Google Scholar 

  • 40.

    Middleton, G. D. Nothing lasts forever: environmental discourses on the collapse of past societies. J. Archaeol. Res. 20, 257–307 (2012).

    Google Scholar 

  • 41.

    Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Béné, C. et al. Is resilience socially constructed? Empirical evidence from Fiji, Ghana, Sri Lanka, and Vietnam. Glob. Environ. Change 38, 153–170 (2016).

    Google Scholar 

  • 43.

    Middleton, G. D. The show must go on: collapse, resilience, and transformation in 21st-century archaeology. Rev. Anthropol. 46, 78–105 (2017).

    Google Scholar 

  • 44.

    Feng, Q. et al. Domino effect of climate change over two millennia in ancient China’s Hexi corridor. Nature Sustainability 2, 957–961 (2019).

    Google Scholar 

  • 45.

    Whittow, M. in (Theory and Practice in Late Antique Archaeology (eds Lavan, L. & Bowden, W.) 404–23 (Brill, 2003).

  • 46.

    Wickman, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 387–411 (Palgrave Macmillan, 2018).

  • 47.

    PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past 13, 1851–1900 (2017).

    Google Scholar 

  • 48.

    Esper, J. et al. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50, 81–90 (2018).

    Google Scholar 

  • 49.

    Franke, J. G. & R. V. Donner. Correlating paleoclimate time series: sources of uncertainty and potential pitfalls. Quat. Sci. Rev. 212, 69–79 (2019).

    ADS 

    Google Scholar 

  • 50.

    Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives. Clim. Past 10, 825–841 (2014).

    Google Scholar 

  • 51.

    Crowley, T. J. Correlating high‐frequency climate variations. Paleoceanography 14, 271–272 (1999).

    ADS 

    Google Scholar 

  • 52.

    Wang, J. et al. Fragility of reconstructed temperature patterns over the Common Era: implications for model evaluation. Geophys. Res. Lett. 42, 7162–7170 (2015).

    ADS 

    Google Scholar 

  • 53.

    Newfield, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 447–493 (Palgrave Macmillan, 2018). This article provides the most thorough and interdisciplinary overview currently available of the cluster of volcanic eruptions that initiated the LALIA.

  • 54.

    Gerring, J. Social Science Methodology: A Unified Framework (Cambridge Univ. Press, 2012).

  • 55.

    Harper, K. & McCormick, M. in The Science of Roman History: Biology, Climate, and the Future of the Past (ed. Scheidel, W.) 11–52 (Princeton Univ. Press, 2018).

  • 56.

    Blom, P. Nature’s Mutiny: How the Little Ice Age of the Long Seventeenth Century Transformed the West and Shaped the Present (Liveright, 2019).

  • 57.

    Harper, K. The Fate of Rome: Climate, Disease, and the End of an Empire (Yale Univ. Press, 2017).

  • 58.

    Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    ADS 

    Google Scholar 

  • 59.

    Stoffel, M. et al. Estimates of volcanic-induced cooling in the northern hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 60.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change) (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

  • 61.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017). The PAGES2k consortium provides some of the most important data on climate change over the past 2,000 years.

    Google Scholar 

  • 62.

    Tardif, R. et al. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15, 1251–1273 (2019).

    Google Scholar 

  • 63.

    Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019). This important article emphasizes the spatiotemporal heterogeneity of climate changes in the past 2,000 years (and prior to anthropogenic global warming).

    ADS 
    CAS 

    Google Scholar 

  • 64.

    Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Helama, S., Jones, P. D. & Briffa, K. R. Limited Late Antique cooling. Nat. Geosci. 10, 242–243 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 66.

    Mangini, A., Spötl, C. & Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet. Sci. Lett. 235, 741–751 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 67.

    Helama, S., Jones, P. D. & Briffa, K. R. Dark Ages cold period: a literature review and directions for future research. Holocene 27, 1600–1606 (2017).

    ADS 

    Google Scholar 

  • 68.

    Riechelmann, D. & Gouw-Bouman, M. T. I. J. Climate during the first millennium ad in NW Europe: a review of climate reconstructions from terrestrial archives. Quat. Res. 91, 111–131 (2019).

    Google Scholar 

  • 69.

    Labuhn, I. et al. in Environment and Society in the Long Late Antiquity (eds In Izdebski, A. & Mulryan, M.) 65–88 (Brill, 2018).

  • 70.

    Matthews, J. A. & Briffa, K. R. The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr. Ann., Ser. A 87, 17–36 (2005).

    Google Scholar 

  • 71.

    Cook, B. I. & Wolkovich, E. M. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 6, 715–719 (2016).

    ADS 

    Google Scholar 

  • 72.

    De Dreu, C. K. & van Dijk, M. A. Climatic shocks associate with innovation in science and technology. PLoS ONE, 13, e0190122 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Lee, H. F. et al. Demographic impact of climate change on northwestern China in the late imperial era. Quat. Int. 425, 237–247 (2016).

    Google Scholar 

  • 74.

    Peregrine, P. N. Social resilience to climate change during the Late Antique Little Ice Age: a replication study. Weather Clim. Soc. 12, 561–573 (2020).

    Google Scholar 

  • 75.

    Zhang, D. D., Brecke, P., Lee, H. F., He, Y. Q. & Zhang, J. Global climate change, war, and population decline in recent human history. Proc. Natl Acad. Sci. USA 104, 19214–19219 (2007). An early and influential study by D. Zhang, a pioneer in the statistical approach to HCS, that links war (the social event most often considered by statistical HCS scholars) to pre-industrial climate changes.

    ADS 
    CAS 

    Google Scholar 

  • 76.

    Tol, R. S. J. & Wagner, S. Climate change and violent conflict in Europe over the last millennium. Clim. Change 99, 65–79 (2010).

    ADS 

    Google Scholar 

  • 77.

    Zhang, Z. et al. Periodic climate cooling enhanced natural disasters and wars in China during ad 10–1900. Proc. Royal Soc. B 277, 3745–3753 (2010).

    Google Scholar 

  • 78.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    ADS 

    Google Scholar 

  • 79.

    Lee, H. F., Zhang, D. D., Brecke, P. & Pei, Q. Climate change, population pressure, and wars in European history. Asian Geogr. 36, 29–45 (2019).

    Google Scholar 

  • 80.

    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Lee, H. F. & Yue, R. P. Ocean/atmosphere interaction and Malthusian catastrophes on the northern fringe of the Asian summer monsoon region in China, 1368–1911. J. Quat. Sci. 35, 974–986 (2020).

    Google Scholar 

  • 82.

    Pei, Q., Zhang, D. D., Fei, J. & Hui, P. Y. Demographic crises of different climate phases in preindustrial northern hemisphere. Hum. Ecol. 48, 519–527 (2020).

    Google Scholar 

  • 83.

    Zhang, D. D. et al. The causality analysis of climate change and large-scale human crisis. Proc. Natl Acad. Sci. USA 108, 17296–17301 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Zhang, D. & Lee, H. Climate change, food shortage and war: a quantitative case study in China during 1500–1800. Catrina Int. J. Environ. Sci. 5, 63–71 (2010).

    Google Scholar 

  • 85.

    Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–20674 (2009). This influential study provides one of the clearest examples of statistical scholarship in HCS being used to model and predict the future effects of anthropogenic global warming on society.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Peregrine, P. N. Climate and social change at the start of the Late Antique Little Ice Age. Holocene 30, 1643–1648 (2020).

    ADS 

    Google Scholar 

  • 87.

    Zhang, D. D., Zhang, J., Lee, H. F. & He, Y. Q. Climate change and war frequency in eastern China over the last millennium. Hum. Ecol. 35, 403–414 (2007).

    Google Scholar 

  • 88.

    van Bavel, B. J. P. et al. Climate and society in long-term perspective: opportunities and pitfalls in the use of historical datasets. Wiley Interdiscip. Rev. Clim. Change 10, e611 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Degroot, D. in The Palgrave Handbook of Climate History (eds. White, S. et al.) 367–385 (Palgrave Macmillan, 2018).

  • 90.

    O’Mahony, S. Medicine and the McNamara fallacy. J. R. Coll. Physicians Edinb. 47, 281–287 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940–942 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Chang. 8, 200–203 (2018).

    ADS 

    Google Scholar 

  • 93.

    Kelly, M. & Ó Gráda, C. The waning of the Little Ice Age: climate change in early modern Europe. J. Interdiscip. Hist. 44, 301–325 (2013).

    Google Scholar 

  • 94.

    Degroot, D. Climate change and society from the fifteenth through the eighteenth centuries. Wiley Interdiscip. Rev. Clim. Change 9, e518 (2018). This article provides an overview of how scholars have thought about the effects of the LIA on society, and suggests that resilience has been understudied in this scholarship.

    Google Scholar 

  • 95.

    Haldon, J. et al. History meets palaeoscience: consilience and collaboration in studying past societal responses to environmental change. Proc. Natl Acad. Sci. USA 115, 3210–3218 (2018). This article was among the first to call for a consilient approach in HCS, which it links to studies that consider small spatiotemporal scales and thereby provide more convincing accounts of causation.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Erdkamp, P. War, food, climate change, and the decline of the Roman empire. J. Late Antiq. 12, 422–465 (2019).

    Google Scholar 

  • 97.

    White, S. & Degroot, D. Climate History Network Zotero Bibliographical Project. Climate History Network, www.climatehistory.net/bibliography (accessed 28 October 2020).

  • 98.

    Fei, J., Zhou, J. & Hou, Y. Circa ad 626 volcanic eruption, climatic cooling, and the collapse of the eastern Turkic empire. Clim. Change 81, 469–475 (2007).

    ADS 

    Google Scholar 

  • 99.

    Warde, P. Global crisis or global coincidence? Past Present 228, 287–301 (2015).

    Google Scholar 

  • 100.

    Drake, B. L. Changes in North Atlantic Oscillation drove population migrations and the collapse of the western Roman empire. Sci. Rep. 7, 1227 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Contreras, D. A. in The Archaeology of Human–Eenvironment Interactions (ed. Contreras, D. A.) 17–36 (Routledge, 2016).

  • 102.

    Baillie, M. G. Suck-in and smear: two related chronological problems for the 90s. Journal of Theoretical Archaeology 2, 12–16 (1991).

    Google Scholar 

  • 103.

    Degroot, D. The Frigid Golden Age: Climate Change, the Little Ice Age, and the Dutch Republic, 1560–1720 (Cambridge Univ. Press, 2018). This book is the first devoted to the resilience of a society during the LIA, and provides a brief overview of some of the challenges in HCS that we explain in greater and more interdisciplinary detail in this Review.

  • 104.

    Camenisch, C. & Rohr, C. When the weather turned bad: the research of climate impacts on society and economy during the Little Ice Age in Europe, an overview. CIG 44, 99–114 (2018).

    Google Scholar 

  • 105.

    Izdebski, A. et al. Realising consilience: how better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat. Sci. Rev. 136, 5–22 (2016).

    ADS 

    Google Scholar 

  • 106.

    Newfield, T. P. & Labuhn, I. Realizing consilience in studies of pre-instrumental climate and pre-laboratory disease. J. Interdiscip. Hist. 48, 211–240 (2017).

    Google Scholar 

  • 107.

    McCormick, M. History’s changing climate: climate science, genomics, and the emerging consilient approach to interdisciplinary history. J. Interdiscip. Hist. 42, 251–273 (2011).

    Google Scholar 

  • 108.

    Riede, F. et al. Prospects and pitfalls in integrating volcanology and archaeology: a review. J. Volcanol. Geotherm. Res. 401, 106977 (2020).

    CAS 

    Google Scholar 

  • 109.

    Heymann, M., Gramelsberger, G. & Mahony, M. (eds) Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-based Modelling and Simulation (Taylor & Francis, 2017).

  • 110.

    Degroot, D. Testing the limits of climate history: the quest for a northeast passage during the Little Ice Age, 1594–1597. J. Interdiscip. Hist. 45, 459–484 (2015).

    Google Scholar 

  • 111.

    Xoplaki, E. et al. The Medieval Climate Anomaly and Byzantium: a review of the evidence on climatic fluctuations, economic performance and societal change. Quat. Sci. Rev. 136, 229–252 (2016).

    ADS 

    Google Scholar 

  • 112.

    Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 113.

    Butzer, K. W. & Endfield, G. H. Critical perspectives on historical collapse. Proc. Natl Acad. Sci. USA 109, 3628–3631 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 114.

    Caseldine, C. J. & Turney, C. The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. J. Quaternary Sci. 25, 88–93 (2010).

    ADS 

    Google Scholar 

  • 115.

    Xoplaki, E. et al. Modelling climate and societal resilience in the eastern Mediterranean in the last millennium. Hum. Ecol. 46, 363–379 (2018). This HCS study provides a model for integrating perspectives from many disciplines, identifying climate effects on limited spatiotemporal scales, understanding resilience and navigating uncertainty.

    Google Scholar 

  • 116.

    Endfield, G. H. Climate and Society in Colonial Mexico: A Study in Vulnerability (John Wiley, 2011).

  • 117.

    Wickman, T. Snowshoe Country: An Environmental and Cultural History of Winter in the Early American Northeast (Cambridge Univ. Press, 2018).

  • 118.

    de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Ebert, C. E. et al. The role of diet in resilience and vulnerability to climate change among early agricultural communities in the Maya lowlands. Curr. Anthropol. 60, 589–601 (2019).

    Google Scholar 

  • 120.

    Åkesson, C. M. et al. 2,100 years of human adaptation to climate change in the High Andes. Nat. Ecol. Evol. 4, 66–74 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Bradtmöller, M., Grimm, S. & Riel-Salvatore, J. Resilience theory in archaeological practice–an annotated review. Quat. Int. 446, 3–16 (2017). This article explains how archaeologists have used and challenged resilience theory and its concept of adaptive cycles.

    Google Scholar 

  • 122.

    Nicoll, K. & Zerboni, A. Is the past key to the present? Observations of cultural continuity and resilience reconstructed from geoarchaeological records. Quat. Int. 545, 119–127 (2020).

    Google Scholar 

  • 123.

    Soens, T. in Strategies, Dispositions and Resources of Social Resilience (eds Endress, M. et al.) 253–274 (Springer, 2020). This study surveys some criticisms of the concept of resilience, and provides a road map for using the term in historical disaster studies that has obvious relevance for HCS.

  • 124.

    Endfield, G. H. Exploring particularity: vulnerability, resilience, and memory in climate change discourses. Environ. Hist. 19, 303–310 (2014).

    Google Scholar 

  • 125.

    Van Bavel, B. et al. Disasters and History: The Vulnerability and Resilience of Past Societies (Cambridge Univ. Press, 2020).

  • 126.

    Matthews, J. B. R. (ed.) in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Annex I: Glossary (IPCC, 2018). This IPCC report on the consequences of 1.5 °C of warming, relative to the pre-industrial average, includes the definitions for ‘resilience’ and ‘adaptation’ that we use in this article.

  • 127.

    Haldon, J. & Rosen, A. Society and environment in the east Mediterranean ca 300–1800 ce, problems of resilience, adaptation and transformation: introductory essay. Hum. Ecol. 46, 275–290 (2018).

    Google Scholar 

  • 128.

    Soens, T. Resilient societies, vulnerable people: coping with North Sea floods before 1800. Past Present 241, 143–177 (2018).

    Google Scholar 

  • 129.

    Holling, C. S. in Sustainable Development of the Biosphere (eds Clarke, W. C. & Munn, R. E.) 292–317 (Cambridge Univ. Press, 1986).

  • 130.

    Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J. & Di Cosmo, N. Pluvials, droughts, the Mongol empire, and modern Mongolia. Proc. Natl Acad. Sci. USA 111, 4375–4379 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Bintliff, J. in The Transition to Late Antiquity: On the Danube and Beyond (ed. Poulter, A. G.) 649–78 (British Academy, 2007).

  • 132.

    Decker, M. Tilling the Hateful Earth: Agricultural Production and Trade in the Late Antique East (Oxford Univ. Press, 2009).

  • 133.

    Izdebski, A. A rural economy in transition: Asia Minor from Late Antiquity into the Early Middle Ages. J. Juristic Papyrol. (Supplement Series), 18 (2013).

  • 134.

    Izdebski, A., Koloch, G. & Słoczyński, T. Exploring Byzantine and Ottoman economic history with the use of palynological data: a quantitative approach. Jahrbuch Der Österreichischen Byzantinistik 65, 67–110 (2015).

    Google Scholar 

  • 135.

    Izdebski, A., Pickett, J., Roberts, N. & Waliszewski, T. The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the eastern Mediterranean in Late Antiquity. Quat. Sci. Rev. 136, 189–208 (2016).

    ADS 

    Google Scholar 

  • 136.

    Banaji, J. Exploring the Economy of Late Antiquity: Selected Essays (Cambridge Univ. Press, 2016).

  • 137.

    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Degroot, D. ‘Never such weather known in these seas’: climatic fluctuations and the Anglo-Dutch wars of the seventeenth century, 1652–1674. Environ. Hist. 20, 239–273 (2014).

    Google Scholar 

  • 139.

    Degroot, D. War of the whales: climate change, weather and arctic conflict in the early seventeenth century. Environ. Hist. 26, 549–577 (2020).

    Google Scholar 

  • 140.

    Hacquebord, L. The hunting of the Greenland right whale in Svalbard, its interaction with climate and its impact on the marine ecosystem. Polar Res. 18, 375–382 (1999).

    Google Scholar 

  • 141.

    Gerrard, C. M. & Petley, D. N. A risk society? Environmental hazards, risk and resilience in the later Middle Ages in Europe. Nat. Hazards 69, 1051–1079 (2013).

    Google Scholar 

  • 142.

    TeBrake, W. Ecology and economy in Early Medieval Frisia. Viator 9, 1–30 (1978).

    Google Scholar 

  • 143.

    Lebecq, S. Marchands et Navigateurs Frisons du Haut Moyen âge I: Essai (Presses Univ. de Lille, 1983).

  • 144.

    Verhulst, A. The Carolingian Economy (Cambridge Univ. Press, 2002).

  • 145.

    Devroey, J. P. Économie Rurale et Société dans l’Europe Franque (VIe-IXe siècles) (Belin, 2003).

  • 146.

    Bazelmans, J. De Late Prehistorie en Protohistorie van Holoceen Noord-Nederland (Waddenacademie KNAW, 2009).

  • 147.

    Vos, P. Origin of the Dutch Coastal Landscape: Long-Term Landscape Evolution of the Netherlands during the Holocene (Barkhuis, 2015).

  • 148.

    Knol, E. & Ijssennagger, N. in Frisians and their North Sea Neighbours: From the Fifth Century to the Viking Age (eds Hines, J. & IJssennagger, N.) 5–24 (Boydell, 2017).

  • 149.

    Gräslund, B. & Price, N. Twilight of the gods? The ‘dust veil event’ of ad 536 in critical perspective. Antiquity 86, 428–443 (2012).

    Google Scholar 

  • 150.

    Tvauri, A. The impact of the climate catastrophe of 536–537 ad in Estonia and neighbouring areas. Eesti Arheoloogia Ajakiri 18, 30–56 (2014).

    Google Scholar 

  • 151.

    Oinonen, M. et al. Buried in water, burdened by nature–resilience carried the Iron Age people through Fimbulvinter. PLoS ONE 15, e0231787 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Dijkman, J. in Famines During the ’Little Ice Ageʼ (1300–1800) (eds Collet, D. & Schuh, M.) 171–193 (Springer, 2018).

  • 153.

    Unger, R. W. Energy sources for the Dutch golden age: peat, wind, and coal. Res. Econ. Hist. 9, 221–253 (1984).

    Google Scholar 

  • 154.

    Curtis, D. R. & Dijkman, J. The escape from famine in the northern Netherlands: a reconsideration using the 1690s harvest failures and a broader northwest European perspective. Seventeenth Century 34, 229–258 (2019).

    Google Scholar 

  • 155.

    Huhtamaa, H. & Helama, S. Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland. J. Hist. Geogr. 57, 40–51 (2017).

    Google Scholar 

  • 156.

    Huhtamaa, H. & Helama, S. Reconstructing crop yield variability in Finland: long-term perspective of the cultivation history on the agricultural periphery since ad 760. Holocene 27, 3–11 (2017).

    ADS 

    Google Scholar 

  • 157.

    Soininen, A. M. Vanha maataloutemme: Maatalous ja Maatalousväestö Suomessa Perinnäisen Maatalouden Loppukaudella 1720-Luvulta 1870-Luvulle (Suomen HIstoriallinen Seura, 1975).

  • 158.

    Taavitsainen, J. P., Simola, H. & Grönlund, E. Cultivation history beyond the periphery: early agriculture in the north European boreal forest. J. World Prehist. 12, 199–253 (1998).

    Google Scholar 

  • 159.

    Korpela, J. Sisä-Suomen asuttaminen ja väestön kasvu myöhäiskeskiajalla ja uuden ajan alussa. Hist. Aikak. 110, 275–290 (2012).

    Google Scholar 

  • 160.

    Epstein, S. R. Freedom and Growth: The Rise of States and Markets in Europe, 1300–1750 (Routledge, 2006).

  • 161.

    Bateman, V. N. The evolution of markets in early modern Europe, 1350–1800: a study of wheat prices 1. Econ. Hist. Rev. 64, 447–471 (2011).

    Google Scholar 

  • 162.

    Federico, G. How much do we know about market integration in Europe? 1. Econ. Hist. Rev. 65, 470–497 (2012).

    Google Scholar 

  • 163.

    Chilosi, D., Murphy, T. E., Studer, R. & Tunçer, A. C. Europe’s many integrations: geography and grain markets, 1620–1913. Explor. Econ. Hist. 50, 46–68 (2013).

    Google Scholar 

  • 164.

    Faugeron, F. Nourrir la Ville: Ravitaillement, Marchés et Métiers de l’Alimentation à Venise dans les Derniers Siècles du Moyen Âge (École Française de Rome, 2014).

  • 165.

    Hämäläinen, P. The Comanche Empire (Yale Univ. Press, 2008).

  • 166.

    Hambrecht, G. Zooarchaeology and modernity in Iceland. Int. J. Hist. Archaeol. 16, 472–487 (2012).

    Google Scholar 

  • 167.

    Hartman, S. et al. Medieval Iceland, Greenland, and the new human condition: a case study in integrated environmental humanities. Global Planet. Change 156, 123–139 (2017).

    ADS 

    Google Scholar 

  • 168.

    Laylander, D. The last days of Lake Cahuilla: the Elmore site. Pac. Coast Archaeol. Soc. Q. 33, 1–69 (1997).

    Google Scholar 

  • 169.

    Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term paleoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Google Scholar 

  • 170.

    Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 171.

    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (Univ. of California Press, 2005).

  • 172.

    Smith, B. D. The Subsistence Economies of Indigenous North American Societies: A Handbook (Smithsonian Institution, 2011).

  • 173.

    Huckell, B. B. A Ground Stone Implement Quarry on the Lower Colorado River, Northwestern Arizona (Cultural Resource Series 3) (Bureau of Land Management, 1986).

  • 174.

    Luthin, H. W. Surviving Through the Days: Translations of Native California Stories and Songs, A California Indian Reader (Univ. of California Press, 2002).

  • 175.

    Hegmon, M. The Archaeology of Regional Interaction: Religion, Warfare, and Exchange Across the American Southwest and Beyond (Univ. of Colorado Press, 2000).

  • 176.

    Zappia, N. A. Traders and Raiders: The Indigenous World of the Colorado Basin, 1540–1859 (UNC Press, 2014).

  • 177.

    Guillet, S. et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 10, 123–128 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 178.

    Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 16742–16747 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 179.

    Campbell, B. M. S. Global climates, the 1257 mega-eruption of Samalas volcano, Indonesia and the English food crisis of 1258. Trans. R. Hist. Soc. 27, 87–121 (2017).

    Google Scholar 

  • 180.

    Bauch, M. in The Dance of Death in Late Medieval and Renaissance Europe. Environmental Stress, Mortality and Social Response (eds Kiss, A. & Pribyl, K.) 214–232 (Routledge, 2020).

  • 181.

    Sánchez Rodrigo, F. in El Cambio Climático en Andalucía: Evolución y Consecuencias Medioambientales (eds Sousa, A. et al.) 25–41 (Alfecat Impresores, 2007).

  • 182.

    Sánchez Rodrigo, F. A review of the Little Ice Age in Andalusia (southern Spain): results and research challenges. Cuadernos de Investigación Geográfica 44, 245–265 (2018).

    Google Scholar 

  • 183.

    Ponsot, P. Atlas de la Historia Económica de la Baja Andalucía, Siglos XVI–XIX (Editoriales Andaluzas Unidas, 1986).

  • 184.

    Ortiz, A. D. Alteraciones Andaluzas (Narcea, 1973).

  • 185.

    Glaser, R. & Riemann, D. A thousand‐year record of temperature variations for Germany and central Europe based on documentary data. J. Quat. Sci. 24, 437–449 (2009).

    Google Scholar 

  • 186.

    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).

    Google Scholar 

  • 187.

    Berger, P. Pontchartrain and the grain trade during the famine of 1693. J. Mod. Hist. 48, 37–86 (1976).

    Google Scholar 

  • 188.

    Jacques, D., Le Roy Ladurie, E. & Sauvy, A. (eds) Histoire de la Population Française, first ed. (Presses Univ. France, 1988).

  • 189.

    Lachiver, M. Les Années de Misère: La Famine au Temps du Grand Roi, 1680–1720 (Fayard, 1991).

  • 190.

    Le Roy Ladurie, E. & Rousseau, D. Impact du climat sur la mortalité en France, de 1680 à l’époque actuelle. Meteorologie 64, 43–53 (2009).

    Google Scholar 

  • 191.

    Dieppois, B. et al. Multidecadal climate variability over northern France during the past 500 years and its relation to large‐scale atmospheric circulation. Int. J. Climatol. 36, 4679–4696 (2016).

    Google Scholar 

  • 192.

    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 193.

    Goubert, P. Beauvais et Le Beauvaisis de 1600 à 1730: Contribution à l’Histoire Sociale de la France du XVIIe Siècle (Éditions de l’École des Hautes Études en Sciences Sociales, 1982).

  • 194.

    Glaser, R. & Hagedorn, H. Die Überschwemmungskatastrophe von 1784 im Maintal. Eine Chronologie ihrer witterungsklimatischen Voraussetzungen und Auswirkungen. Erde 121, 1–14 (1990).

    Google Scholar 

  • 195.

    Demarée, G. R. The catastrophic floods of February 1784 in and around Belgium—a Little Ice Age event of frost, snow, river ice … and floods. J. Sci. Hydro. 51, 878–898 (2006).

    Google Scholar 

  • 196.

    Glaser, R. et al. The variability of European floods since ad 1500. Clim. Change 101, 235–256 (2010).

    ADS 

    Google Scholar 

  • 197.

    Brázdil, R. et al. European Floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theor. Appl. Climatol. 100, 163–189 (2010).

    ADS 

    Google Scholar 

  • 198.

    Benito, G., Brázdil, R., Herget, J. & Machado, M. J. Quantitative historical hydrology in Europe. Hydrol. Earth Syst. Sci. 19, 3517–3539 (2015).

    ADS 

    Google Scholar 

  • 199.

    Weichselgartner, J. Naturgefahren als Soziale Konstruktion. Eine Geographische Beobachtung der Gesellschaftlichen Auseinandersetzung mit Naturrisiken (Rheinische Friedrich Wilhelms Univ. Bonn, 2001).

  • 200.

    Benson, L., Petersen, K. & Stein, J. Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries–were they drought induced? Clim. Change 83, 187–213 (2007).

    ADS 

    Google Scholar 

  • 201.

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 202.

    Shen, C., Wang, W. C., Hao, Z. & Gong, W. Exceptional drought events over eastern China during the last five centuries. Clim. Change 85, 453–471 (2007).

    ADS 

    Google Scholar 

  • 203.

    Fang, K. et al. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Global Planet. Change 80-81, 190–197 (2012).

    ADS 

    Google Scholar 

  • 204.

    Zhang, H. et al. East Asian warm season temperature variations over the past two millennia. Sci. Rep. 8, 7702 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 205.

    Sun, C. & Liu, Y. Tree-ring-based drought variability in the eastern region of the silk road and its linkages to the Pacific Ocean. Ecol. Indic. 96, 421–429 (2019).

    Google Scholar 

  • 206.

    Brook, T. The Troubled Empire: China in the Yuan and Ming Dynasties (Harvard Univ. Press, 2010).

  • 207.

    Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 208.

    Tierney, J. E. et al. Late-twentieth-century warming in Lake Tanganyika unprecedented since ad 500. Nat. Geosci. 3, 422–425 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 209.

    Anchukaitis, K. J. & Tierney, J. E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41, 1291–1306 (2013).

    Google Scholar 

  • 210.

    Sletten, H. R. et al. A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 149–162 (2013).

    Google Scholar 

  • 211.

    Voarintsoa, N. R. G. et al. Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from ad 1400 to 1950. Holocene 27, 384–396 (2017).

    ADS 

    Google Scholar 

  • 212.

    de Luna, K. M. Surveying the boundaries of history and archaeology: early Botatwe settlement in south central Africa and the ‘sibling disciplines’ debate. Afr. Archaeol. Rev. 29, 209–251 (2012).

    Google Scholar 

  • 213.

    de Luna, K. M. Collecting Food, Cultivating People: Subsistence and Society in Central Africa (Yale Univ. Press, 2016).

  • 214.

    de Luna, K. M. & Fleisher, J. B. Speaking with Substance: Methods of Language and Materials in African History (Springer, 2019).

  • 215.

    Nash, D. J. et al. African hydroclimatic variability during the last 2000 years. Quat. Sci. Rev. 154, 1–22 (2016).

    ADS 

    Google Scholar 

  • 216.

    de Luna, K. M. Classifying Botatwe: M.60 and K.40 languages and the settlement chronology of south central Africa. Afr. Linguist. 16, 65–96 (2010).

    Google Scholar 

  • 217.

    Hoegh-Guldberg, O. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, 2018).

  • 218.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    ADS 

    Google Scholar 

  • 219.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 220.

    van Weezel, S. Local warming and violent armed conflict in Africa. World Dev. 126, 104708 (2020).

    Google Scholar 

  • 221.

    Wilson, R. et al. Last millennium northern hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    ADS 

    Google Scholar 

  • 222.

    Schneider, L. et al. Revising midlatitude summer temperatures back to ad 600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562 (2015).

    ADS 

    Google Scholar 

  • 223.

    Anchukaitis, K. J. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163, 1–22 (2017).

    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *