Strange IndiaStrange India


  • Cassel, D. & Selinger, Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Van Eps, N. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl Acad. Sci. USA 108, 9420–9424 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Eur. J. Biochem. 184, 687–698 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman, D. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Namkung, Y. et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci. Signal. https://doi.org/10.1126/scisignal.aat1631 (2018).

  • Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA 100, 16077–16082 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. Structural insights into the process of GPCR–G protein complex formation. Cell 177, 1243–1251.e12 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, X. et al. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR spectroscopy. Proc. Natl Acad. Sci. USA 117, 23096–23105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • García-Nafría, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345–2355 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–D364 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pandy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, W., Lu, S., Xu, X., Wu, G. & Lambert, N. A. The role of G protein conformation in receptor–G protein selectivity. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01231-z (2023).

  • Qu, Q. et al. Insights into distinct signaling profiles of the µOR activated by diverse agonists. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01208-y (2022).

  • Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L. & Gilman, A. G. Relationship between the β-adrenergic receptor and adenylate cyclase. J. Biol. Chem. 252, 5761–5775 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robison, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP. Annu. Rev. Biochem. 37, 149–174 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torphy, T. J. β-Adrenoceptors, cAMP and airway smooth muscle relaxation: challenges to the dogma. Trends Pharmacol. Sci. 15, 370–374 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hall, I. P. in Encyclopedia of Respiratory Medicine (eds Laurent, G. J. & Shapiro, S. D.) 288–292 (Academic, 2006).

  • Lerch, M. T. et al. Viewing rare conformations of the β2 adrenergic receptor with pressure-resolved DEER spectroscopy. Proc. Natl Acad. Sci. USA 117, 31824–31831 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980).

    Article 
    PubMed 

    Google Scholar 

  • Wallukat, G. The β-adrenergic receptors. Herz 27, 683–690 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Constrained catecholamines gain β2AR selectivity through allosteric effects on pocket dynamics. Nat. Commun. 14, 2138 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, M. et al. Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 258–267 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hein, P. et al. Gs activation is time-limiting in initiating receptor-mediated signaling. J. Biol. Chem. 281, 33345–33351 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markby, D. W., Onrust, R. & Bourne, H. R. Separate GTP binding and GTPase activating domains of a Gα subunit. Science 262, 1895–1901 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, B. & Tate, C. G. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29, 583–594 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, Q. et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Graziano, M. P., Freissmuth, M. & Gilman, A. G. Expression of Gsα in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem. 264, 409–418 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, J. C., Jones, A. M., Temple, B. R. & Dohlman, H. G. Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins. Proc. Natl Acad. Sci. USA 109, 7275–7279 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kaya, A. I. et al. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit. J. Biol. Chem. 289, 24475–24487 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic, 1995).

  • Sunahara, R. K., Tesmer, J. J., Gilman, A. G. & Sprang, S. R. Crystal structure of the adenylyl cyclase activator G. Science 278, 1943–1947 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dror, R. O. et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl Acad. Sci. USA 108, 13118–13123 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsutsumi, N. et al. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Sci. Adv. 8, eabl5442 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batebi, H. et al. Mechanistic insights into G protein association with a G protein-coupled receptor. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2851358/v1 (2023).

  • Berriman, J. & Unwin, N. Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaledhonkar, S., Fu, Z., White, H. & Frank, J. Time-resolved cryo-electron microscopy using a microfluidic chip. Methods Mol. Biol. 1764, 59–71 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, X. et al. A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25, 663–670.e663 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ménétret, J. F., Hofmann, W., Schröder, R. R., Rapp, G. & Goody, R. S. Time-resolved cryo-electron microscopic study of the dissociation of actomyosin induced by photolysis of photolabile nucleotides. J. Mol. Biol. 219, 139–144 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Yoder, N. et al. Light-coupled cryo-plunger for time-resolved cryo-EM. J. Struct. Biol. 212, 107624 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Punjani, A. & Fleet, D. 3D flexible refinement: structure and motion of flexible proteins from cryo-EM. Microsc. Microanal. 28, 1218–1218 (2022).

    Article 
    ADS 

    Google Scholar 

  • Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. W. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank, J. & Ourmazd, A. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100, 61–67 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat. Commun. 11, 4734 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilger, D. et al. Structural insights into differences in G protein activation by family A and family B GPCRs. Science https://doi.org/10.1126/science.aba3373 (2020).

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tomasello, G., Armenia, I. & Molla, G. The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics 36, 2909–2911 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Robertson, M. J., van Zundert, G. C. P., Borrelli, K. & Skiniotis, G. GemSpot: a pipeline for robust modeling of ligands into Cryo-EM maps. Structure https://doi.org/10.1016/j.str.2020.04.018 (2020).

  • Kluyver, T. et al. Jupyter Notebooks – a publishing format for reproducible computational workflows. in International Conference on Electronic Publishing (eds Loizides, F. & Schmidt, B.) 87–90 (IOS Press, 2016).

  • Pérez-Hernández, G. & Hildebrand, P. W. mdciao: accessible analysis and visualization of molecular dynamics simulation data. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500163 (2022).

  • Peisley, A. & Skiniotis, G. 2D projection analysis of GPCR complexes by negative stain electron microscopy. Methods Mol. Biol. 1335, 29–38 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dror, R. O. et al. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl Acad. Sci. USA 106, 4689–4694 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27-38.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rose, A. S. & Hildebrand, P. W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 43, W576–W579 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiemann, J. K. S., Guixà-González, R., Hildebrand, P. W. & Rose, A. S. MDsrv: viewing and sharing molecular dynamics simulations on the web. Nat. Methods 14, 1123–1124 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    3.0.CO;2-H” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-987X%28199709%2918%3A12%3C1463%3A%3AAID-JCC4%3E3.0.CO%3B2-H” aria-label=”Article reference 87″ data-doi=”10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H”>Article 
    CAS 

    Google Scholar 

  • McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

  • Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).

    Article 

    Google Scholar 

  • Hotelling, H. Analysis of a complex of statistical variables into principal components. J Educ Psychol 24, 417–441 (1933).

    Article 

    Google Scholar 

  • Scherer, M. K. et al. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 11, 5525–5542 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • d’Errico, M., Facco, E., Laio, A. & Rodriguez, A. Automatic topography of high-dimensional data sets by non-parametric density peak clustering. Inf. Sci. 560, 476–492 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Pérez-Hernández, G., Batebi, H., & Hildebrand, P. W. Molecular simulation data associated with the manuscript ‘Time-resolved cryo-EM of G protein activation by a GPCR’. Zenodo https://doi.org/10.5281/zenodo.10548787 (2024).

  • Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *