Strange IndiaStrange India


  • Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

  • Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

    Article 

    Google Scholar 

  • Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).

    Article 

    Google Scholar 

  • Das, P., Porth, O. & Watts, A. L. GRMHD simulations of accreting neutron stars with non-dipole fields. Mon. Not. R. Astron. Soc. 515, 3144–3161 (2022).

    Article 

    Google Scholar 

  • Galloway, D. K. & Keek, L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions Vol. 461 (eds Belloni, T. M., Méndez, M. & Zhang, C.) 209–262 (Springer Berlin, 2021).

  • Degenaar, N. et al. Accretion disks and coronae in the X-ray flashlight. Space Science Rev. 214, 15 (2018).

    Article 

    Google Scholar 

  • Fragile, P. C., Ballantyne, D. R., Maccarone, T. J. & Witry, J. W. L. Simulating the collapse of a thick accretion disk due to a type I X-ray burst from a neutron star. Astrophys. J. Lett. 867, L28 (2018).

    Article 

    Google Scholar 

  • Fragile, P. C., Ballantyne, D. R. & Blankenship, A. Interactions of type I X-ray bursts with thin accretion disks. Nat. Astron. 4, 541–546 (2020).

    Article 

    Google Scholar 

  • Galloway, D. K., Yao, Y., Marshall, H., Misanovic, Z. & Weinberg, N. Radius-expansion burst spectra from 4U 1728-34: an ultracompact binary? Astrophys. J. 724, 417–424 (2010).

    Article 

    Google Scholar 

  • Lewin, W. H. G. et al. EXOSAT observations of 4U/MXB 1636-53: on the relation between the amount of accreted fuel and the strength of an X-ray burst. Astrophys. J. 319, 893 (1987).

    Article 
    CAS 

    Google Scholar 

  • Casella, P. et al. Fast infrared variability from a relativistic jet in GX 339-4. Mon. Not. R. Astron. Soc. 404, L21–L25 (2010).

    Article 

    Google Scholar 

  • Fender, R. in Compact Stellar X-Ray Sources Vol. 39 (eds Lewin, W. & van der Klis, M.) 381–419 (Cambridge Univ. Press, 2006).

  • Vincentelli, F. M. et al. A shared accretion instability for black holes and neutron stars. Nature 615, 45–49 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • in’t Zand, J. J. M. et al. A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE. Astron. Astrophys. 553, A83 (2013).

    Article 

    Google Scholar 

  • Maccarone, T. J. & Coppi, P. S. Hysteresis in the light curves of soft X-ray transients. Mon. Not. R. Astron. Soc. 338, 189–196 (2003).

    Article 

    Google Scholar 

  • Ballantyne, D. R. & Everett, J. E. On the dynamics of suddenly heated accretion disks around neutron stars. Astrophys. J. 626, 364–372 (2005).

    Article 
    CAS 

    Google Scholar 

  • Meier, D. L. The association of jet production with geometrically thick accretion flows and black hole rotation. Astrophys. J. 548, L9–L12 (2001).

    Article 
    CAS 

    Google Scholar 

  • Gallo, E., Degenaar, N. & van den Eijnden, J. Hard state neutron star and black hole X-ray binaries in the radio: X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478, L132–L136 (2018).

    Article 
    CAS 

    Google Scholar 

  • Saikia, P. et al. Lorentz factors of compact jets in black hole X-ray binaries. Astrophys. J. 887, 21 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tetarenko, A. J. et al. Radio frequency timing analysis of the compact jet in the black hole X-ray binary Cygnus X-1. Mon. Not. R. Astron. Soc. 484, 2987–3003 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tetarenko, A. J. et al. Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 504, 3862–3883 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zdziarski, A. A., Tetarenko, A. J. & Sikora, M. Jet parameters in the black hole X-ray binary MAXI J1820+070. Astrophys. J. 925, 189 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fomalont, E. B., Geldzahler, B. J. & Bradshaw, C. F. Scorpius X-1: the evolution and nature of the twin compact radio lobes. Astrophys. J. 558, 283–301 (2001).

    Article 

    Google Scholar 

  • Spencer, R. E. et al. Radio and X-ray observations of jet ejection in Cygnus X-2. Mon. Not. R. Astron. Soc. 435, L48–L52 (2013).

    Article 

    Google Scholar 

  • Mirabel, I. F. & Rodríguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994).

    Article 

    Google Scholar 

  • Wood, C. M. et al. The varying kinematics of multiple ejecta from the black hole X-ray binary MAXI J1820 + 070. Mon. Not. R. Astron. Soc. 505, 3393–3403 (2021).

    Article 
    CAS 

    Google Scholar 

  • Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).

    Article 
    CAS 

    Google Scholar 

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article 

    Google Scholar 

  • Livio, M. Astrophysical jets: a phenomenological examination of acceleration and collimation. Phys. Rep. 311, 225–245 (1999).

    Article 

    Google Scholar 

  • Muñoz-Darias, T., Fender, R. P., Motta, S. E. & Belloni, T. M. Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 443, 3270–3283 (2014).

    Article 

    Google Scholar 

  • Matsuoka, M. et al. The MAXI Mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn 61, 999–1010 (2009).

    Article 
    CAS 

    Google Scholar 

  • Krimm, H. A. et al. The Swift/BAT hard X-ray transient monitor. Astrophys. J. 209, 14 (2013).

    Article 

    Google Scholar 

  • Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article 
    CAS 

    Google Scholar 

  • Winkler, C. et al. The INTEGRAL mission. Astron. Astrophys. 411, L1–L6 (2003).

    Article 
    CAS 

    Google Scholar 

  • Kuulkers, E. et al. INTEGRAL reloaded: spacecraft, instruments and ground system. NewAR 93, 101629 (2021).

    Article 

    Google Scholar 

  • Lund, N. et al. JEM-X: the X-ray monitor aboard INTEGRAL. Astron. Astrophys. 411, L231–L238 (2003).

    Article 
    CAS 

    Google Scholar 

  • Ubertini, P. et al. IBIS: the imager on-board INTEGRAL. Astron. Astrophys. 411, L131–L139 (2003).

    Article 
    CAS 

    Google Scholar 

  • Courvoisier, T. J. L. et al. The INTEGRAL Science Data Centre (ISDC). Astron. Astrophys. 411, L53–L57 (2003).

    Article 

    Google Scholar 

  • Worpel, H., Galloway, D. K. & Price, D. J. Evidence for accretion rate change during type I X-ray bursts. Astrophys. J. 772, 94 (2013).

    Article 

    Google Scholar 

  • Arnaud, K. in Astronomical Data Analysis Software and Systems V Vol. 101 of Astronomical Society of the Pacific Conference Series (eds Jacoby, G. & Barnes, J.) 17 (1996).

  • Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article 
    CAS 

    Google Scholar 

  • Verner, D. A. & Yakovlev, D. G. Analytic FITS for partial photoionization cross sections. Astron. Astrophy. Sup. 109, 125–133 (1995).

    CAS 

    Google Scholar 

  • Güver, T. et al. Burst-disk interaction in 4U 1636-536 as observed by NICER. Astrophys. J. 935, 154 (2022).

    Article 

    Google Scholar 

  • Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D. & Chakrabarty, D. Thermonuclear (Type I) X-ray bursts observed by the Rossi X-ray timing explorer. Astrophys. J. 179, 360–422 (2008).

    Article 
    CAS 

    Google Scholar 

  • Worpel, H., Galloway, D. K. & Price, D. J. Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts. Astrophys. J. 801, 60 (2015).

    Article 

    Google Scholar 

  • CASA Team. et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article 

    Google Scholar 

  • Migliari, S. et al. Disc-jet coupling in an atoll-type neutron star X-ray binary: 4U 1728-34 (GX 354-0). Mon. Not. R. Astron. Soc. 342, L67–L71 (2003).

    Article 

    Google Scholar 

  • Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1979).

  • Longair, M. S. High Energy Astrophysics. Vol. 1: Particles, Photons and Their Detection (Cambridge Univ. Press, 1992).

  • Heinke, C. O. et al. Galactic ultracompact X-ray binaries: disk stability and evolution. Astrophys. J. 768, 184 (2013).

    Article 

    Google Scholar 

  • Dubus, G., Done, C., Tetarenko, B. E. & Hameury, J.-M. The impact of thermal winds on the outburst lightcurves of black hole X-ray binaries. Astron. Astrophys. 632, A40 (2019).

    Article 

    Google Scholar 

  • Vincentelli, F. M. et al. Discovery of a thermonuclear Type I X-ray burst in infrared: new limits on the orbital period of 4U 1728-34. Mon. Not. R. Astron. Soc. 495, L37–L41 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vincentelli, F. M. et al. Sub-second infrared variability from the archetypal accreting neutron star 4U 1728-34. Mon. Not. R. Astron. Soc. 525, 2509–2518 (2023).

    Article 
    CAS 

    Google Scholar 

  • Díaz Trigo, M. & Boirin, L. Accretion disc atmospheres and winds in low-mass X-ray binaries. Astron. Nachr. 337, 368 (2016).

    Article 

    Google Scholar 

  • Fender, R. & Bright, J. Synchrotron self-absorption and the minimum energy of optically thick radio flares from stellar mass black holes. Mon. Not. R. Astron. Soc. 489, 4836–4846 (2019).

    Google Scholar 

  • Alexander, T. in Astronomical Time Series (eds Maoz, D., Sternberg, A. & Leibowitz, E. M.) 163 (Springer Dordrecht, 1997).

  • Alexander, T. Improved AGN light curve analysis with the z-transformed discrete correlation function. Preprint at https://arxiv.org/abs/1302.1508 (2013).

  • Chaty, S., Dubus, G. & Raichoor, A. Near-infrared jet emission in the microquasar XTE J1550-564. Astron. Astrophys. 529, A3 (2011).

    Article 

    Google Scholar 

  • Rybicki, G. & Lightman, A. Radiative Processes in Astrophysics (Wiley, 1979).

  • Russell, T. D. et al. Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571. Mon. Not. R. Astron. Soc. 498, 5772–5785 (2020).

    Article 
    CAS 

    Google Scholar 

  • Maccarone, T. J., van den Eijnden, J., Russell, T. D. & Degenaar, N. Eclipses of jets and discs of X-ray binaries as a powerful tool for understanding jet physics and binary parameters. Mon. Not. R. Astron. Soc. 499, 957–973 (2020).

    Article 
    CAS 

    Google Scholar 

  • Maccarone, T. J., Pattie, E. C. & Tetarenko, A. J. The simultaneity of emission from approaching and receding jets. Mon. Not. R. Astron. Soc. 517, L76–L80 (2022).

    Article 
    CAS 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 

    Google Scholar 

  • Wang, Y. et al. Study of the X-ray properties of the neutron star binary 4U 1728-34 from the soft-to-hard state. Mon. Not. R. Astron. Soc. 484, 3004–3016 (2019).

    Article 
    CAS 

    Google Scholar 

  • Díaz Trigo, M. et al. ALMA observations of 4U 1728-34 and 4U 1820-30: first detection of neutron star X-ray binaries at 300 GHz. Astron. Astrophys. 600, A8 (2017).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *