Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).
Google Scholar
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).
Google Scholar
Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).
Google Scholar
Das, P., Porth, O. & Watts, A. L. GRMHD simulations of accreting neutron stars with non-dipole fields. Mon. Not. R. Astron. Soc. 515, 3144–3161 (2022).
Google Scholar
Galloway, D. K. & Keek, L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions Vol. 461 (eds Belloni, T. M., Méndez, M. & Zhang, C.) 209–262 (Springer Berlin, 2021).
Degenaar, N. et al. Accretion disks and coronae in the X-ray flashlight. Space Science Rev. 214, 15 (2018).
Google Scholar
Fragile, P. C., Ballantyne, D. R., Maccarone, T. J. & Witry, J. W. L. Simulating the collapse of a thick accretion disk due to a type I X-ray burst from a neutron star. Astrophys. J. Lett. 867, L28 (2018).
Google Scholar
Fragile, P. C., Ballantyne, D. R. & Blankenship, A. Interactions of type I X-ray bursts with thin accretion disks. Nat. Astron. 4, 541–546 (2020).
Google Scholar
Galloway, D. K., Yao, Y., Marshall, H., Misanovic, Z. & Weinberg, N. Radius-expansion burst spectra from 4U 1728-34: an ultracompact binary? Astrophys. J. 724, 417–424 (2010).
Google Scholar
Lewin, W. H. G. et al. EXOSAT observations of 4U/MXB 1636-53: on the relation between the amount of accreted fuel and the strength of an X-ray burst. Astrophys. J. 319, 893 (1987).
Google Scholar
Casella, P. et al. Fast infrared variability from a relativistic jet in GX 339-4. Mon. Not. R. Astron. Soc. 404, L21–L25 (2010).
Google Scholar
Fender, R. in Compact Stellar X-Ray Sources Vol. 39 (eds Lewin, W. & van der Klis, M.) 381–419 (Cambridge Univ. Press, 2006).
Vincentelli, F. M. et al. A shared accretion instability for black holes and neutron stars. Nature 615, 45–49 (2023).
Google Scholar
in’t Zand, J. J. M. et al. A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE. Astron. Astrophys. 553, A83 (2013).
Google Scholar
Maccarone, T. J. & Coppi, P. S. Hysteresis in the light curves of soft X-ray transients. Mon. Not. R. Astron. Soc. 338, 189–196 (2003).
Google Scholar
Ballantyne, D. R. & Everett, J. E. On the dynamics of suddenly heated accretion disks around neutron stars. Astrophys. J. 626, 364–372 (2005).
Google Scholar
Meier, D. L. The association of jet production with geometrically thick accretion flows and black hole rotation. Astrophys. J. 548, L9–L12 (2001).
Google Scholar
Gallo, E., Degenaar, N. & van den Eijnden, J. Hard state neutron star and black hole X-ray binaries in the radio: X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478, L132–L136 (2018).
Google Scholar
Saikia, P. et al. Lorentz factors of compact jets in black hole X-ray binaries. Astrophys. J. 887, 21 (2019).
Google Scholar
Tetarenko, A. J. et al. Radio frequency timing analysis of the compact jet in the black hole X-ray binary Cygnus X-1. Mon. Not. R. Astron. Soc. 484, 2987–3003 (2019).
Google Scholar
Tetarenko, A. J. et al. Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 504, 3862–3883 (2021).
Google Scholar
Zdziarski, A. A., Tetarenko, A. J. & Sikora, M. Jet parameters in the black hole X-ray binary MAXI J1820+070. Astrophys. J. 925, 189 (2022).
Google Scholar
Fomalont, E. B., Geldzahler, B. J. & Bradshaw, C. F. Scorpius X-1: the evolution and nature of the twin compact radio lobes. Astrophys. J. 558, 283–301 (2001).
Google Scholar
Spencer, R. E. et al. Radio and X-ray observations of jet ejection in Cygnus X-2. Mon. Not. R. Astron. Soc. 435, L48–L52 (2013).
Google Scholar
Mirabel, I. F. & Rodríguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994).
Google Scholar
Wood, C. M. et al. The varying kinematics of multiple ejecta from the black hole X-ray binary MAXI J1820 + 070. Mon. Not. R. Astron. Soc. 505, 3393–3403 (2021).
Google Scholar
Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).
Google Scholar
Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).
Google Scholar
Livio, M. Astrophysical jets: a phenomenological examination of acceleration and collimation. Phys. Rep. 311, 225–245 (1999).
Google Scholar
Muñoz-Darias, T., Fender, R. P., Motta, S. E. & Belloni, T. M. Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 443, 3270–3283 (2014).
Google Scholar
Matsuoka, M. et al. The MAXI Mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn 61, 999–1010 (2009).
Google Scholar
Krimm, H. A. et al. The Swift/BAT hard X-ray transient monitor. Astrophys. J. 209, 14 (2013).
Google Scholar
Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).
Google Scholar
Winkler, C. et al. The INTEGRAL mission. Astron. Astrophys. 411, L1–L6 (2003).
Google Scholar
Kuulkers, E. et al. INTEGRAL reloaded: spacecraft, instruments and ground system. NewAR 93, 101629 (2021).
Google Scholar
Lund, N. et al. JEM-X: the X-ray monitor aboard INTEGRAL. Astron. Astrophys. 411, L231–L238 (2003).
Google Scholar
Ubertini, P. et al. IBIS: the imager on-board INTEGRAL. Astron. Astrophys. 411, L131–L139 (2003).
Google Scholar
Courvoisier, T. J. L. et al. The INTEGRAL Science Data Centre (ISDC). Astron. Astrophys. 411, L53–L57 (2003).
Google Scholar
Worpel, H., Galloway, D. K. & Price, D. J. Evidence for accretion rate change during type I X-ray bursts. Astrophys. J. 772, 94 (2013).
Google Scholar
Arnaud, K. in Astronomical Data Analysis Software and Systems V Vol. 101 of Astronomical Society of the Pacific Conference Series (eds Jacoby, G. & Barnes, J.) 17 (1996).
Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).
Google Scholar
Verner, D. A. & Yakovlev, D. G. Analytic FITS for partial photoionization cross sections. Astron. Astrophy. Sup. 109, 125–133 (1995).
Google Scholar
Güver, T. et al. Burst-disk interaction in 4U 1636-536 as observed by NICER. Astrophys. J. 935, 154 (2022).
Google Scholar
Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D. & Chakrabarty, D. Thermonuclear (Type I) X-ray bursts observed by the Rossi X-ray timing explorer. Astrophys. J. 179, 360–422 (2008).
Google Scholar
Worpel, H., Galloway, D. K. & Price, D. J. Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts. Astrophys. J. 801, 60 (2015).
Google Scholar
CASA Team. et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).
Google Scholar
Migliari, S. et al. Disc-jet coupling in an atoll-type neutron star X-ray binary: 4U 1728-34 (GX 354-0). Mon. Not. R. Astron. Soc. 342, L67–L71 (2003).
Google Scholar
Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1979).
Longair, M. S. High Energy Astrophysics. Vol. 1: Particles, Photons and Their Detection (Cambridge Univ. Press, 1992).
Heinke, C. O. et al. Galactic ultracompact X-ray binaries: disk stability and evolution. Astrophys. J. 768, 184 (2013).
Google Scholar
Dubus, G., Done, C., Tetarenko, B. E. & Hameury, J.-M. The impact of thermal winds on the outburst lightcurves of black hole X-ray binaries. Astron. Astrophys. 632, A40 (2019).
Google Scholar
Vincentelli, F. M. et al. Discovery of a thermonuclear Type I X-ray burst in infrared: new limits on the orbital period of 4U 1728-34. Mon. Not. R. Astron. Soc. 495, L37–L41 (2020).
Google Scholar
Vincentelli, F. M. et al. Sub-second infrared variability from the archetypal accreting neutron star 4U 1728-34. Mon. Not. R. Astron. Soc. 525, 2509–2518 (2023).
Google Scholar
Díaz Trigo, M. & Boirin, L. Accretion disc atmospheres and winds in low-mass X-ray binaries. Astron. Nachr. 337, 368 (2016).
Google Scholar
Fender, R. & Bright, J. Synchrotron self-absorption and the minimum energy of optically thick radio flares from stellar mass black holes. Mon. Not. R. Astron. Soc. 489, 4836–4846 (2019).
Alexander, T. in Astronomical Time Series (eds Maoz, D., Sternberg, A. & Leibowitz, E. M.) 163 (Springer Dordrecht, 1997).
Alexander, T. Improved AGN light curve analysis with the z-transformed discrete correlation function. Preprint at https://arxiv.org/abs/1302.1508 (2013).
Chaty, S., Dubus, G. & Raichoor, A. Near-infrared jet emission in the microquasar XTE J1550-564. Astron. Astrophys. 529, A3 (2011).
Google Scholar
Rybicki, G. & Lightman, A. Radiative Processes in Astrophysics (Wiley, 1979).
Russell, T. D. et al. Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571. Mon. Not. R. Astron. Soc. 498, 5772–5785 (2020).
Google Scholar
Maccarone, T. J., van den Eijnden, J., Russell, T. D. & Degenaar, N. Eclipses of jets and discs of X-ray binaries as a powerful tool for understanding jet physics and binary parameters. Mon. Not. R. Astron. Soc. 499, 957–973 (2020).
Google Scholar
Maccarone, T. J., Pattie, E. C. & Tetarenko, A. J. The simultaneity of emission from approaching and receding jets. Mon. Not. R. Astron. Soc. 517, L76–L80 (2022).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Google Scholar
Wang, Y. et al. Study of the X-ray properties of the neutron star binary 4U 1728-34 from the soft-to-hard state. Mon. Not. R. Astron. Soc. 484, 3004–3016 (2019).
Google Scholar
Díaz Trigo, M. et al. ALMA observations of 4U 1728-34 and 4U 1820-30: first detection of neutron star X-ray binaries at 300 GHz. Astron. Astrophys. 600, A8 (2017).
Google Scholar