Strange IndiaStrange India


  • Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 967–1015 (Springer, 2017).

  • Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396 (2010).

    Article 
    ADS 

    Google Scholar 

  • Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

    Article 
    ADS 

    Google Scholar 

  • Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys. J. Lett. 934, L7 (2022).

    Article 
    ADS 

    Google Scholar 

  • Itagaki, K. Transient Discovery Report for 2023-05-20. Transient Name Server (2023).

  • Perley, D. A. et al. LT classification of SN 2023ixf as a Type II supernova in M101. Transient Name Server AstroNote 2023-119 (2023).

  • Bruch, R. J. et al. The prevalence and influence of circumstellar material around hydrogen-rich supernova progenitors. Astrophys. J. 952, 119 (2023).

    Article 
    ADS 

    Google Scholar 

  • Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gal-Yam, A. et al. Real-time detection and rapid multiwavelength follow-up observations of a highly subluminous Type II-P supernova from the Palomar Transient Factory survey. Astrophys. J. 736, 159 (2011).

    Article 
    ADS 

    Google Scholar 

  • Van Dyk, S. D. et al. The SN 2023ixf progenitor in M101: II. Properties. Preprint at https://arxiv.org/abs/2308.14844 (2023).

  • Jacobson-Galán, W. V. et al. SN 2023ixf in Messier 101: photo-ionization of dense, close-in circumstellar material in a nearby type II supernova. Astrophys. J. Lett. 954, L42 (2023).

    Article 
    ADS 

    Google Scholar 

  • Katz, B., Sapir, N. & Waxman, E. in Death of Massive Stars: Supernovae and Gamma-Ray Bursts (eds Roming, P., Kawai, N. & Pian, E.) 274–281 (2012).

  • Margalit, B., Quataert, E. & Ho, A. Y. Q. Optical to X-ray signatures of dense circumstellar interaction in core-collapse supernovae. Astrophys. J. 928, 122 (2022).

    Article 
    ADS 

    Google Scholar 

  • Huang, C. & Chevalier, R. A. Electron scattering wings on lines in interacting supernovae. Mon. Not. R. Astron. Soc. 475, 1261–1273 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hillier, D. J. Photoionization and electron–ion recombination in astrophysical plasmas. Atoms 11, 54 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grefenstette, B. W., Brightman, M., Earnshaw, H. P., Harrison, F. A., & Margutti, R. Early hard X-rays from the nearby core-collapse supernova SN 2023ixf. Astrophys. J. Lett. 952, L3 (2023).

    Article 
    ADS 

    Google Scholar 

  • Smith, N. et al. High-resolution spectroscopy of SN 2023ixf’s first week: engulfing the asymmetric circumstellar material. Astrophys. J. 956, 46 (2023).

    Article 
    ADS 

    Google Scholar 

  • Dong, Y. et al. A comprehensive optical search for pre-explosion outbursts from the quiescent progenitor of SN 2023ixf. Astrophys. J. 957, 28 (2023).

    Article 
    ADS 

    Google Scholar 

  • Shussman, T., Nakar, E., Waldman, R. & Katz, B. Type II supernovae progenitor and ejecta properties from the total emitted light, ET. Preprint at https://arxiv.org/abs/1602.02774 (2016).

  • Nakar, E., Poznanski, D. & Katz, B. The importance of 56Ni in shaping the light curves of type II supernovae. Astrophys. J. 823, 127 (2016).

    Article 
    ADS 

    Google Scholar 

  • Qin, Y.-J. et al. The progenitor star of SN 2023ixf: a massive red supergiant with enhanced, episodic pre-supernova mass loss. Preprint at https://arxiv.org/abs/2309.10022 (2023).

  • Özel, F., Psaltis, D., Narayan, R. & Villarreal, A. S. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).

    Article 
    ADS 

    Google Scholar 

  • de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies (Springer, 1991).

  • Yaron, O. et al. Amateur astronomer contribution to constraining the explosion time and rise of the Type II SN 2023ixf in M101. Transient Name Server AstroNote 2023-133 (2023).

  • Page, M. J. et al. The use and calibration of read-out streaks to increase the dynamic range of the Swift Ultraviolet/Optical Telescope. Mon. Not. R. Astron. Soc. 436, 1684–1693 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bersten, M. C., & Hamuy, M. Bolometric light curves for 33 Type II plateau supernovae. Astrophys. J. 701, 200 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Valenti, S. et al. The diversity of Type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sharon, A., & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tartaglia, L. et al. The early discovery of SN 2017ahn: signatures of persistent interaction in a fast-declining Type II supernova. Astrophys. J. 907, 52 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yamanaka, M., Fujii, M. & Nagayama, T. Bright Type II supernova 2023ixf in M 101: a quick analysis of the early-stage spectra and near-infrared light curves. Publ. Astron. Soc. Jpn. 75, L27–L31 (2023).

    Article 
    ADS 

    Google Scholar 

  • Lyman, J. D., Bersier, D. & James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae. Mon. Not. R. Astron. Soc. 437, 3848–3862 (2014).

    Article 
    ADS 

    Google Scholar 

  • Jencson, J. E. et al. A luminous red supergiant and dusty long-period variable progenitor for SN 2023ixf. Astrophys. J. Lett. 952, L30 (2023).

    Article 
    ADS 

    Google Scholar 

  • Kilpatrick, C. D. et al. SN 2023ixf in Messier 101: a variable red supergiant as the progenitor candidate to a type II supernova. Astrophys. J. Lett. 952, L23 (2023).

    Article 
    ADS 

    Google Scholar 

  • Morton, D. C. Atomic data for resonance absorption lines. III. Wavelengths longward of the Lyman limit for the elements hydrogen to gallium. Astrophys. J. Suppl. Ser. 149, 205 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vasylyev, S. S. et al. Early-time ultraviolet and optical Hubble Space Telescope spectroscopy of the Type II supernova 2022wsp. Astrophys. J. Lett. 959, L26 (2023).

    Article 
    ADS 

    Google Scholar 

  • Vasylyev, S. S. et al. Early-time ultraviolet spectroscopy and optical follow-up observations of the Type IIP supernova 2021yja. Astrophys. J. 934, 134 (2022).

    Article 
    ADS 

    Google Scholar 

  • Bostroem, K. A. et al. SN 2022acko: the first early far-ultraviolet spectra of a Type IIP supernova. Astrophys. J. Lett. 953, L18 (2023).

    Article 
    ADS 

    Google Scholar 

  • Baron, E. et al. Preliminary spectral analysis of the Type II supernova 1999EM. Astrophys. J. 545, 444 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gal-Yam, A. et al. GALEX spectroscopy of SN 2005ay suggests ultraviolet spectral uniformity among Type II-P supernovae. Astrophys. J. 685, L117 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Type IIP supernova light curves affected by the acceleration of red supergiant winds. Mon. Not. R. Astron. Soc. 476, 2840–2851 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Newville, M., Stensitzki, T., Allen, D. B. & Ingargiola, A. LMFIT: non-linear least-square minimization and curve-fitting for Python. Zenodo https://zenodo.org/records/11813 (2014).

  • Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schlafly, E. F., & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article 
    ADS 

    Google Scholar 

  • Azalee Bostroem, K. et al. Early spectroscopy and dense circumstellar medium interaction in SN 2023ixf. Astrophys. J. Lett. 956, L5 (2023).

    Article 
    ADS 

    Google Scholar 

  • Dessart, L., Hillier, D. J., & Audit, E. Explosion of red-supergiant stars: influence of the atmospheric structure on shock breakout and early-time supernova radiation. Astron. Astrophys. 605, A83 (2017).

    Article 
    ADS 

    Google Scholar 

  • Leonard, D. C., Filippenko, A. V., Barth, A. J. & Matheson, T. Evidence for asphericity in the Type IIN supernova SN 1998S. Astrophys. J. 536, 239 (2000).

    Article 
    ADS 

    Google Scholar 

  • Fassia, A. et al. Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127. Mon. Not. R. Astron. Soc. 325, 907–930 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Terreran, G. et al. The early phases of supernova 2020pni: shock ionization of the nitrogen-enriched circumstellar material. Astrophys. J. 926, 20 (2022).

    Article 
    ADS 

    Google Scholar 

  • Jacobson-Galán, W. V. et al. Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II supernova 2020tlf. Astrophys. J. 924, 15 (2022).

    Article 
    ADS 

    Google Scholar 

  • Vasylyev, S. S. et al. Early time spectropolarimetry of the aspherical Type II supernova SN 2023ixf. Astrophys. J. Lett. 955, L37 (2023).

    Article 
    ADS 

    Google Scholar 

  • Berger, E. et al. Millimeter observations of the Type II SN 2023ixf: constraints on the proximate circumstellar medium. Astrophys. J. Lett. 951, L31 (2023).

    Article 
    ADS 

    Google Scholar 

  • Morag, J., Sapir, N. & Waxman, E. Shock cooling emission from explosions of red supergiants – I. A numerically calibrated analytic model. Mon. Not. R. Astron. Soc. 522, 2764–2776 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hosseinzadeh, G. et al. Shock cooling and possible precursor emission in the early light curve of the Type II SN 2023ixf. Astrophys. J. Lett. 953, L16 (2023).

    Article 
    ADS 

    Google Scholar 

  • Hiramatsu, D. et al. From discovery to the first month of the Type II supernova 2023ixf: high and variable mass loss in the final year before explosion. Astrophys. J. 955, L8 (2023).

    Article 
    ADS 

    Google Scholar 

  • Singh Teja, R. et al. Far-ultraviolet to near-infrared observations of SN 2023ixf: a high-energy explosion engulfed in complex circumstellar material. Astrophys. J. 954, L12 (2023).

    Article 
    ADS 

    Google Scholar 

  • Soraisam, M. D. et al. The SN 2023ixf progenitor in M101. I. Infrared variability. Astrophys. J. 957, 64 (2023).

    Article 
    ADS 

    Google Scholar 

  • Flinner, N., Tucker, M. A., Beacom, J. F. & Shappee, B. J. No UV-bright eruptions from SN 2023ixf in GALEX imaging 15–20 yr before explosion. Res. Notes AAS 7, 174 (2023).

    Article 
    ADS 

    Google Scholar 

  • Fransson, C. UV and X-ray emission from Type II supernovae. Bull. Am. Astron. Soc. 14, 935 (1982).

    ADS 

    Google Scholar 

  • Fransson, C. et al. High-density circumstellar interaction in the luminous Type IIn SN 2010jl: the first 1100 days. Astrophys. J. 797, 118 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kurucz, R. L. An atomic and molecular data bank for stellar spectroscopy. ASP Conf. Ser. 81, 583 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *