Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 967–1015 (Springer, 2017).
Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).
Google Scholar
Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396 (2010).
Google Scholar
Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).
Google Scholar
Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys. J. Lett. 934, L7 (2022).
Google Scholar
Itagaki, K. Transient Discovery Report for 2023-05-20. Transient Name Server (2023).
Perley, D. A. et al. LT classification of SN 2023ixf as a Type II supernova in M101. Transient Name Server AstroNote 2023-119 (2023).
Bruch, R. J. et al. The prevalence and influence of circumstellar material around hydrogen-rich supernova progenitors. Astrophys. J. 952, 119 (2023).
Google Scholar
Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).
Google Scholar
Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).
Google Scholar
Gal-Yam, A. et al. Real-time detection and rapid multiwavelength follow-up observations of a highly subluminous Type II-P supernova from the Palomar Transient Factory survey. Astrophys. J. 736, 159 (2011).
Google Scholar
Van Dyk, S. D. et al. The SN 2023ixf progenitor in M101: II. Properties. Preprint at https://arxiv.org/abs/2308.14844 (2023).
Jacobson-Galán, W. V. et al. SN 2023ixf in Messier 101: photo-ionization of dense, close-in circumstellar material in a nearby type II supernova. Astrophys. J. Lett. 954, L42 (2023).
Google Scholar
Katz, B., Sapir, N. & Waxman, E. in Death of Massive Stars: Supernovae and Gamma-Ray Bursts (eds Roming, P., Kawai, N. & Pian, E.) 274–281 (2012).
Margalit, B., Quataert, E. & Ho, A. Y. Q. Optical to X-ray signatures of dense circumstellar interaction in core-collapse supernovae. Astrophys. J. 928, 122 (2022).
Google Scholar
Huang, C. & Chevalier, R. A. Electron scattering wings on lines in interacting supernovae. Mon. Not. R. Astron. Soc. 475, 1261–1273 (2018).
Google Scholar
Hillier, D. J. Photoionization and electron–ion recombination in astrophysical plasmas. Atoms 11, 54 (2023).
Google Scholar
Grefenstette, B. W., Brightman, M., Earnshaw, H. P., Harrison, F. A., & Margutti, R. Early hard X-rays from the nearby core-collapse supernova SN 2023ixf. Astrophys. J. Lett. 952, L3 (2023).
Google Scholar
Smith, N. et al. High-resolution spectroscopy of SN 2023ixf’s first week: engulfing the asymmetric circumstellar material. Astrophys. J. 956, 46 (2023).
Google Scholar
Dong, Y. et al. A comprehensive optical search for pre-explosion outbursts from the quiescent progenitor of SN 2023ixf. Astrophys. J. 957, 28 (2023).
Google Scholar
Shussman, T., Nakar, E., Waldman, R. & Katz, B. Type II supernovae progenitor and ejecta properties from the total emitted light, ET. Preprint at https://arxiv.org/abs/1602.02774 (2016).
Nakar, E., Poznanski, D. & Katz, B. The importance of 56Ni in shaping the light curves of type II supernovae. Astrophys. J. 823, 127 (2016).
Google Scholar
Qin, Y.-J. et al. The progenitor star of SN 2023ixf: a massive red supergiant with enhanced, episodic pre-supernova mass loss. Preprint at https://arxiv.org/abs/2309.10022 (2023).
Özel, F., Psaltis, D., Narayan, R. & Villarreal, A. S. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).
Google Scholar
de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies (Springer, 1991).
Yaron, O. et al. Amateur astronomer contribution to constraining the explosion time and rise of the Type II SN 2023ixf in M101. Transient Name Server AstroNote 2023-133 (2023).
Page, M. J. et al. The use and calibration of read-out streaks to increase the dynamic range of the Swift Ultraviolet/Optical Telescope. Mon. Not. R. Astron. Soc. 436, 1684–1693 (2013).
Google Scholar
Bersten, M. C., & Hamuy, M. Bolometric light curves for 33 Type II plateau supernovae. Astrophys. J. 701, 200 (2009).
Google Scholar
Valenti, S. et al. The diversity of Type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).
Google Scholar
Sharon, A., & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).
Google Scholar
Tartaglia, L. et al. The early discovery of SN 2017ahn: signatures of persistent interaction in a fast-declining Type II supernova. Astrophys. J. 907, 52 (2021).
Google Scholar
Yamanaka, M., Fujii, M. & Nagayama, T. Bright Type II supernova 2023ixf in M 101: a quick analysis of the early-stage spectra and near-infrared light curves. Publ. Astron. Soc. Jpn. 75, L27–L31 (2023).
Google Scholar
Lyman, J. D., Bersier, D. & James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae. Mon. Not. R. Astron. Soc. 437, 3848–3862 (2014).
Google Scholar
Jencson, J. E. et al. A luminous red supergiant and dusty long-period variable progenitor for SN 2023ixf. Astrophys. J. Lett. 952, L30 (2023).
Google Scholar
Kilpatrick, C. D. et al. SN 2023ixf in Messier 101: a variable red supergiant as the progenitor candidate to a type II supernova. Astrophys. J. Lett. 952, L23 (2023).
Google Scholar
Morton, D. C. Atomic data for resonance absorption lines. III. Wavelengths longward of the Lyman limit for the elements hydrogen to gallium. Astrophys. J. Suppl. Ser. 149, 205 (2003).
Google Scholar
Vasylyev, S. S. et al. Early-time ultraviolet and optical Hubble Space Telescope spectroscopy of the Type II supernova 2022wsp. Astrophys. J. Lett. 959, L26 (2023).
Google Scholar
Vasylyev, S. S. et al. Early-time ultraviolet spectroscopy and optical follow-up observations of the Type IIP supernova 2021yja. Astrophys. J. 934, 134 (2022).
Google Scholar
Bostroem, K. A. et al. SN 2022acko: the first early far-ultraviolet spectra of a Type IIP supernova. Astrophys. J. Lett. 953, L18 (2023).
Google Scholar
Baron, E. et al. Preliminary spectral analysis of the Type II supernova 1999EM. Astrophys. J. 545, 444 (2000).
Google Scholar
Gal-Yam, A. et al. GALEX spectroscopy of SN 2005ay suggests ultraviolet spectral uniformity among Type II-P supernovae. Astrophys. J. 685, L117 (2008).
Google Scholar
Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Type IIP supernova light curves affected by the acceleration of red supergiant winds. Mon. Not. R. Astron. Soc. 476, 2840–2851 (2018).
Google Scholar
Newville, M., Stensitzki, T., Allen, D. B. & Ingargiola, A. LMFIT: non-linear least-square minimization and curve-fitting for Python. Zenodo https://zenodo.org/records/11813 (2014).
Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).
Google Scholar
Schlafly, E. F., & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Google Scholar
Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).
Google Scholar
Azalee Bostroem, K. et al. Early spectroscopy and dense circumstellar medium interaction in SN 2023ixf. Astrophys. J. Lett. 956, L5 (2023).
Google Scholar
Dessart, L., Hillier, D. J., & Audit, E. Explosion of red-supergiant stars: influence of the atmospheric structure on shock breakout and early-time supernova radiation. Astron. Astrophys. 605, A83 (2017).
Google Scholar
Leonard, D. C., Filippenko, A. V., Barth, A. J. & Matheson, T. Evidence for asphericity in the Type IIN supernova SN 1998S. Astrophys. J. 536, 239 (2000).
Google Scholar
Fassia, A. et al. Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127. Mon. Not. R. Astron. Soc. 325, 907–930 (2001).
Google Scholar
Terreran, G. et al. The early phases of supernova 2020pni: shock ionization of the nitrogen-enriched circumstellar material. Astrophys. J. 926, 20 (2022).
Google Scholar
Jacobson-Galán, W. V. et al. Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II supernova 2020tlf. Astrophys. J. 924, 15 (2022).
Google Scholar
Vasylyev, S. S. et al. Early time spectropolarimetry of the aspherical Type II supernova SN 2023ixf. Astrophys. J. Lett. 955, L37 (2023).
Google Scholar
Berger, E. et al. Millimeter observations of the Type II SN 2023ixf: constraints on the proximate circumstellar medium. Astrophys. J. Lett. 951, L31 (2023).
Google Scholar
Morag, J., Sapir, N. & Waxman, E. Shock cooling emission from explosions of red supergiants – I. A numerically calibrated analytic model. Mon. Not. R. Astron. Soc. 522, 2764–2776 (2023).
Google Scholar
Hosseinzadeh, G. et al. Shock cooling and possible precursor emission in the early light curve of the Type II SN 2023ixf. Astrophys. J. Lett. 953, L16 (2023).
Google Scholar
Hiramatsu, D. et al. From discovery to the first month of the Type II supernova 2023ixf: high and variable mass loss in the final year before explosion. Astrophys. J. 955, L8 (2023).
Google Scholar
Singh Teja, R. et al. Far-ultraviolet to near-infrared observations of SN 2023ixf: a high-energy explosion engulfed in complex circumstellar material. Astrophys. J. 954, L12 (2023).
Google Scholar
Soraisam, M. D. et al. The SN 2023ixf progenitor in M101. I. Infrared variability. Astrophys. J. 957, 64 (2023).
Google Scholar
Flinner, N., Tucker, M. A., Beacom, J. F. & Shappee, B. J. No UV-bright eruptions from SN 2023ixf in GALEX imaging 15–20 yr before explosion. Res. Notes AAS 7, 174 (2023).
Google Scholar
Fransson, C. UV and X-ray emission from Type II supernovae. Bull. Am. Astron. Soc. 14, 935 (1982).
Google Scholar
Fransson, C. et al. High-density circumstellar interaction in the luminous Type IIn SN 2010jl: the first 1100 days. Astrophys. J. 797, 118 (2014).
Google Scholar
Kurucz, R. L. An atomic and molecular data bank for stellar spectroscopy. ASP Conf. Ser. 81, 583 (1995).
Google Scholar
Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).
Google Scholar