Strange India All Strange Things About India and world


  • Celli, J. P. et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 14321–14326 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    CAS 
    Article 

    Google Scholar 

  • Wells, M. L. & Goldberg, E. D. Occurrence of small colloids in sea water. Nature 353, 342–344 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004).

    CAS 
    Article 

    Google Scholar 

  • Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    CAS 
    Article 

    Google Scholar 

  • Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Childress, S. Mechanics of Swimming and Flying (Cambridge Univ. Press, 1981).

  • Berg, H. C. E. coli in Motion (Springer, 2004).

  • Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Elfring, G. J. & Lauga, E. in Complex Fluids in Biological Systems (ed. Spagnolie, S.) 283–317 (Springer, 2015).

  • Patteson, A. E., Gopinath, A. & Arratia, P. E. Active colloids in complex fluids. Curr. Opin. Colloid Interf. Sci. 21, 86–96 (2016).

    CAS 
    Article 

    Google Scholar 

  • Shoesmith, J. G. The measurement of bacterial motility. Microbiology 22, 528–535 (1960).

    Google Scholar 

  • Schneider, W. R. & Doetsch, R. N. Effect of viscosity on bacterial motility. J. Bacteriol. 117, 696–701 (1974).

    CAS 
    Article 

    Google Scholar 

  • Berg, H. C. & Turner, L. Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Magariyama, Y. & Kudo, S. A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Biophys. J. 83, 733–739 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Martinez, V. A. et al. Flagellated bacterial motility in polymer solutions. Proc. Natl Acad. Sci. USA 111, 17771–17776 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, Y., Li, G. & Ardekani, A. M. Reduced viscosity for flagella moving in a solution of long polymer chains. Phys. Rev. Fluids 3, 023101 (2018).

    ADS 
    Article 

    Google Scholar 

  • Patteson, A. E., Gopinath, A., Goulian, M. & Arratia, P. E. Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5, 15761 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Qu, Z., Temel, F. Z., Henderikx, R. & Breuer, K. S. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. Proc. Natl Acad. Sci. USA 115, 1707–1712 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Qu, Z. & Breuer, K. S. Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility. Phys. Rev. Fluids 5, 073103 (2020).

    ADS 
    Article 

    Google Scholar 

  • Zöttl, A. & Yeomans, J. M. Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nat. Phys. 15, 554–558 (2019).

    Article 

    Google Scholar 

  • Binagia, J. P., Phoa, A., Housiadas, K. D. & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. J. Fluid Mech. 900, A4 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Man, Y. & Lauga, E. Phase-separation models for swimming enhancement in complex fluids. Phys. Rev. E 92, 023004 (2015).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Hyon, Y., Marcos, Powers, T. R., Stocker, R. & Fu, H. C. The wiggling trajectories of bacteria. J. Fluid Mech. 705, 58–76 (2012).

    ADS 
    Article 

    Google Scholar 

  • Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    CAS 
    Article 

    Google Scholar 

  • Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    CAS 
    Article 

    Google Scholar 

  • Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Peng, Y., Liu, Z. & Cheng, X. Imaging the emergence of bacterial turbulence: phase diagram and transition kinetics. Sci. Adv. 7, eabd1240 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, Z., Zeng, W., Ma, X. & Cheng, X. Density fluctuations and energy spectra of 3D bacterial suspensions. Soft Matter 17, 10806–10817 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hiemenz, P. C. & Lodge, T. Polymer Chemistry 2nd edn (CRC Press, 2007).

  • Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).

    CAS 
    Article 

    Google Scholar 

  • Macosko, C. W. Rheology: Principles, Measurements, and Applications (VCH, 1994).

  • Jeffrey, D. J. & Onishi, Y. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261–290 (1984).

    ADS 
    Article 

    Google Scholar 

  • Zhang, B. K., Leishangthem, P. K., Ding, Y. & Xu, X. L. An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria. Proc. Natl Acad. Sci. USA 118, e2100145118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, G., Tam, L.-K. & Tang, J. X. Amplified effect of Brownian motion in bacterial near-surface swimming. Proc. Natl Acad. Sci. USA 105, 18355–18359 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–518 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Crenshaw, H. C. A new look at locomotion in microorganisms: rotating and translating. Am. Zool. 36, 608–618 (1996).

    Article 

    Google Scholar 

  • Rossi, M., Cicconofri, G., Beran, A., Noselli, G. & DeSimone, A. Kinematics of flagellar swimming in Euglena gracilis: helical trajectories and flagellar shapes. Proc. Natl Acad. Sci. USA 114, 13085–13090 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cortese, D. & Wan, K. Y. Control of helical navigation by three-dimensional flagellar beating. Phys. Rev. Lett. 126, 088003 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shimogonya, Y. et al. Torque-induced precession of bacterial flagella. Sci. Rep. 5, 18488 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Poon, W. C. K., Weeks, E. R. & Royall, C. P. On measuring colloidal volume fractions. Soft Matter 8, 21–30 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interf. Sci. 179, 298–310 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.