Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).
Google Scholar
Brazil, R. The origin of homochirality. Chemistry World (26 October 2015).
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).
Google Scholar
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Google Scholar
Singh, J. et al. Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalysed hydrolysis facilitating regioselective lysine ligation in neutral water. J. Am. Chem. Soc. 144, 10151–10155 (2022).
Google Scholar
Flack, H. D. Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a review of his crystallographic and chemical work. Acta Cryst. A A65, 371–389 (2009).
Google Scholar
Blackmond, D. G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736 (2004).
Google Scholar
Viedma, C., Ortiz, J. E., de Torres, T., Izumi, T. & Blackmond, D. G. Evolution of solid-phase homochirality for a proteinogenic amino acid. J. Am. Chem. Soc. 130, 15274–15275 (2008).
Google Scholar
Klussmann, M. et al. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441, 621–623 (2006).
Google Scholar
Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA from nearly racemic precursors. Nat. Chem. 3, 704–706 (2011).
Google Scholar
Hein, J. E. & Blackmond, D. G. On the origin of single chirality of amino acids and sugars in biogenesis. Acc. Chem. Res. 45, 2045–2054 (2012).
Google Scholar
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Google Scholar
Yu, J., Jones, A. X., Legnani, L. & Blackmond, D. G. Prebiotic access to enantioenriched glyceraldehyde mediated by peptides. Chem. Sci. 12, 6350–6354 (2021).
Google Scholar
Legnani, L., Darù, A., Jones, A. X. & Blackmond, D. G. Mechanistic insight into the origin of stereoselectivity in the ribose-mediated Strecker synthesis of alanine. J. Am. Chem. Soc. 143, 7852–7858 (2021).
Google Scholar
Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).
Google Scholar
Campbell, T. D. et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 10, 4508 (2019).
Google Scholar
Gillams, R. J. & Jia, T. Z. Mineral surface-templated self-assembling systems: case studies from nanoscience and surface science towards origins of life research. Life 8, 10 (2018).
Google Scholar
Doran, D., Abul-Haija, Y. M. & Cronin, L. Emergence of function and selection from recursively programmed polymerisation reactions in mineral environments. Angew. Chem. Int. Ed. 58, 11253–11256 (2019).
Google Scholar
Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M. R. A chiroselective peptide replicator. Nature 409, 797–801 (2001).
Google Scholar
Schmidt, J. G., Nielsen, P. E. & Orgel, L. E. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc. 119, 1494–1495 (1997).
Google Scholar
Bolli, M., Micura, R. & Eschenmoser, A. Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-29,39-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem. Biol. 4, 309–320 (1997).
Google Scholar
Munegami, T. & Shimoyama, A. Development of homochiral peptides in the chemical evolutionary process: separation of homochiral and heterochiral peptides. Chirality 15, S108–S115 (2003).
Google Scholar
Sczepanski, J. T. & Joyce, G. F. A cross-chiral polymerase ribozyme. Nature 515, 440–442 (2014).
Google Scholar
Tjhung, K., Sczepanski, J. T., Murtfeldt, E. R. & Joyce, G. F. RNA-catalyzed cross-chiral polymerization of RNA. J. Am. Chem. Soc. 142, 15331–15339 (2020).
Google Scholar
Bare, G. A. K. & Joyce, G. F. Cross-chiral, RNA-catalyzed exponential amplification of RNA. J. Am. Chem. Soc. 143, 19160–19166 (2021).
Google Scholar
Hoops, S. COPASI – A COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).
Google Scholar
Frank, F. C. On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–463 (1953).
Google Scholar
Ozturk, S. F., Liu, Z., Sutherland, J. D. & Sasselov, D. D. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. Sci. Adv. 9, eadg8274 (2023).
Google Scholar
Schimmel, P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125–158 (1987).
Google Scholar