Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Google Scholar
Neeleman, M. et al. The kinematics of z ≳ 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).
Google Scholar
Volonteri, M. The formation and evolution of massive black holes. Science 337, 544–547 (2012).
Google Scholar
Van der Vlugt, D. & Costa, T. How AGN feedback drives the size growth of the first quasars. Mon. Not. R. Astron. Soc. 490, 4918–4934 (2019).
Google Scholar
Hickox, R. C. & Alexander, D. M. Obscured active galactic nuclei. Annu. Rev. Astron. Astrophys. 56, 625 (2018).
Google Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B. & Hewett, P. C. Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. Astrophys. J. 373, 23–53 (1991).
Google Scholar
Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Data Release 5. Astrophys. J. 692, 758–777 (2009).
Google Scholar
Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).
Google Scholar
Cameron, E. On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publ. Astron. Soc. Aust. 28, 128–139 (2011).
Google Scholar
Shen, Y. et al. Gemini GNIRS near-infrared spectroscopy of 50 quasars at z ≳ 5.7. Astrophys. J. 873, 35 (2019).
Google Scholar
Schindler, J.-T. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 51 (2020).
Google Scholar
Yang, J. et al. Probing early super-massive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 < z ≤ 7.64. Astrophys. J. 923, 262 (2021).
Google Scholar
Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A strong redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2011).
Google Scholar
Trump, J. R. et al. A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. Astrophys. J. Suppl. Ser. 165, 1–18 (2006).
Google Scholar
Dai, X., Shankar, F. & Sivakoff, G. R. 2MASS reveals a large intrinsic fraction of BALQSOs. Astrophys. J. 672, 108–114 (2008).
Google Scholar
Bruni, G. et al. The WISSH quasars project. VI. Fraction and properties of BAL quasars in the hyper-luminosity regime. Astron. Astrophys. 630, A111 (2019).
Google Scholar
Wang, F. et al. The discovery of a luminous broad absorption line quasar at a redshift of 7.02. Astrophys. J. Lett. 869, L9 (2018).
Google Scholar
Rodríguez Hidalgo, P. et al. Survey of extremely high-velocity outflows in Sloan Digital Sky Survey quasars. Astrophys. J. 896, 151 (2021).
Google Scholar
Ishibashi, W., Banerji, M. & Fabian, A. C. AGN radiative feedback in dusty quasar populations. Mon. Not. R. Astron. Soc. 469, 1496–1501 (2017).
Google Scholar
Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations. Mon. Not. R. Astron. Soc. 473, 4197–4219 (2018).
Google Scholar
Dunn, J. P., Crenshaw, D. M., Kraemer, S. B. & Trippe, M. L. Physical conditions in the ultraviolet absorbers of IRAS F22456-5125. Astrophys. J. 713, 900–905 (2010).
Google Scholar
Moe, M., Arav, N., Bautista, M. A. & Korista, K. T. Quasar outflow contribution to AGN feedback: observations of QSO SDSS J0838+2955. Astrophys. J. 706, 525–534 (2009).
Google Scholar
Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).
Google Scholar
Elvis, M. A structure for quasar. Astrophys. J. 545, 63–76 (2000).
Google Scholar
Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).
Google Scholar
Eilers, A.-C. et al. Detecting and characterizing young quasars. I. Systemic redshifts and proximity zone measurements. Astrophys. J. 900, 37 (2020).
Google Scholar
Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The environment of bright QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).
Google Scholar
Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).
Google Scholar
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Google Scholar
Bañados, E. et al. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: more than 100 quasars within the first Gyr of the Universe. Astrophys. J. Suppl. Ser. 227, 11 (2016).
Google Scholar
Wang, F. et al. Exploring reionization-era quasars. III. Discovery of 16 quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and quasar luminosity function at z ∼ 6.7. Astrophys. J. Lett. 884, 30 (2019).
Google Scholar
López, S. et al. XQ-100: a legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter. Astron. Astrophys. 594, A91 (2016).
Google Scholar
Modigliani, A. et al. In Soc. Photo-Opt. Instr. Eng. Conf. Ser. Observatory Operations: Strategies, Processes, and Systems III Vol. 7737 (eds Silva, D. R. et al.) 773728 (SPIE, 2010).
Cupani, G. et al. In Soc. Photo-Opt. Instr. Eng. Conf. Series Vol. 11452, 114521U (SPIE, 2020).
Ross, N. P. & Cross, N. J. G. The near and mid-infrared photometric properties of known redshift z ≳ 5 quasars. Mon. Not. R. Astron. Soc. 494, 789–803 (2020).
Google Scholar
Jiang, L. et al. Discovery of eight z ~ 6 quasars in the Sloan Digital Sky Survey overlap regions. Astron. J. 149, 188 (2015).
Google Scholar
Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).
Google Scholar
Cross, N. J. G. et al. The VISTA Science Archive. Astron. Astrophys. 548, A119 (2012).
Google Scholar
Mazzucchelli, C. et al. Physical properties of 15 quasars at z ≳ 6.5. Astrophys. J. 849, 91 (2017).
Google Scholar
Bañados, E. et al. A metal-poor damped Lyα system at redshift 6.4. Astrophys. J. 885, 59 (2019).
Google Scholar
Edge, A. et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: bridging the gap between low and high redshift. Messenger 154, 32–34 (2013).
Google Scholar
Persson, S. E. et al. FourStar: the near-infrared imager for the 6.5 m Baade Telescope at Las Campanas Observatory. Publ. Astron. Soc. Pac. 125, 654–682 (2013).
Google Scholar
Moorwood, A., Cuby, J. G. & Lidman, C. SOFI sees first light at the NTT. Messenger 91, 9–13 (1998).
Google Scholar
Reichard, T. A. et al. Continuum and emission-line properties of broad absorption line quasars. Astron. J. 126, 2594–2607 (2003).
Google Scholar
Knigge, C., Scaringi, S., Goad, M. R. & Cottis, C. E. The intrinsic fraction of broad-absorption line quasars. Mon. Not. R. Astron. Soc. 386, 1426–1435 (2008).
Google Scholar
Maddox, N., Hewett, P. C., Warren, S. J. & Croom, S. M. Luminous K-band selected quasars from UKIDSS. Mon. Not. R. Astron. Soc. 386, 1605–1624 (2008).
Google Scholar
Giustini, M., Cappi, M. & Vignali, C. On the absorption of X-ray bright broad absorption line quasars. Astron. Astrophys. 491, 425–434 (2008).
Google Scholar
White, R. L. et al. An I-band-selected sample of radio-emitting quasars: evidence for a large population of red quasars. Astron. J. 126, 706–722 (2003).
Google Scholar
Becker, R. H. et al. Properties of radio-selected broad absorption line quasars from the first bright quasar survey. Astrophys. J. 538, 72–82 (2000).
Google Scholar
Chehade, B. et al. Two more, bright, z > 6 quasars from VST ATLAS and WISE. Mon. Not. R. Astron. Soc. 478, 1649–1659 (2018).
Google Scholar
Reed, S. L. et al. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Mon. Not. R. Astron. Soc. 468, 4702–4718 (2017).
Google Scholar
Pâris, I. et al. The Sloan Digital Sky Survey Quasar Catalog: fourteenth data release. Astron. Astrophys. 613, A51 (2018).
Google Scholar
Dunn, J. P. et al. BAL outflow contribution to AGN feedback: frequency of S IV outflows in the SDSS. Astrophys. J. 750, 143 (2012).
Google Scholar
Connor, T. et al. X-ray observations of a [C II]-bright, z = 6.59 quasar/companion system. Astrophys. J. 900, 189 (2020).
Google Scholar
Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).
Google Scholar
Vestergaard, M. & Wilkes, B. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Supp. 134, 1–33 (2001).
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).
Google Scholar
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Erratum: Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 427, 1800 (2012).
Google Scholar
Vestergaard, M. & Osmer, P. S. Mass functions of the active black holes in distant quasars from the large bright quasar survey, the bright quasar survey, and the color-selected sample of the SDSS fall equatorial stripe. Astrophys. J. 699, 800–816 (2009).
Google Scholar
Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).
Google Scholar
Coatman, L. et al. Correcting C IV-based virial black hole masses. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).
Google Scholar