Strange IndiaStrange India


  • Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lambeth, J. D. & Neish, A. S. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu. Rev. Pathol. 9, 119–145 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578–584 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Diebold, B. A., Smith, S. M., Li, Y. & Lambeth, J. D. NOX2 as a target for drug development: indications, possible complications, and progress. Antioxid. Redox. Signal. 23, 375–405 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Magnani, F. et al. Crystal structures and atomic model of NADPH oxidase. Proc. Natl Acad. Sci. USA 114, 6764–6769 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. Structures of mouse DUOX1–DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nat. Struct. Mol. Biol. 27, 1086–1093 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, J. X., Liu, R., Song, K. & Chen, L. Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nat. Commun. 12, 155 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, R. et al. Structure of human phagocyte NADPH oxidase in the resting state. eLife 11, e83743 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noreng, S. et al. Structure of the core human NADPH oxidase NOX2. Nat. Commun. 13, 6079 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Warren, J. J., Ener, M. E., Vlcek, A., Winkler, J. R. & Gray, H. B. Electron hopping through proteins. Coord. Chem. Rev. 256, 2478–2487 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winkler, J. R. & Gray, H. B. Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumimoto, H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3249–3277 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lapouge, K., Smith, S. J., Groemping, Y. & Rittinger, K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. J. Biol. Chem. 277, 10121–10128 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van de Geer, A. et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J. Clin. Invest. 128, 3957–3975 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lapouge, K. et al. Structure of the TPR domain of p67phox in complex with Rac·GTP. Mol. Cell 6, 899–907 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogura, K. et al. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J. Biol. Chem. 281, 3660–3668 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kami, K., Takeya, R., Sumimoto, H. & Kohda, D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J. 21, 4268–4276 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, M. I., Gill, D. J., Perisic, O., Quinn, M. T. & Williams, R. L. PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol. Cell 12, 39–50 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, C. H., Freeman, J. L., Lee, T., Motalebi, S. A. & Lambeth, J. D. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67phox. J. Biol. Chem. 273, 16663–16668 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dahan, I., Smith, S. M. & Pick, E. A Cys-Gly-Cys triad in the dehydrogenase region of Nox2 plays a key role in the interaction with p67phox. J. Leukoc. Biol. 98, 859–874 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mizrahi, A., Berdichevsky, Y., Casey, P. J. & Pick, E. A prenylated p47phox-p67phox-Rac1 chimera is a quintessential NADPH oxidase activator: membrane association and functional capacity. J. Biol. Chem. 285, 25485–25499 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nisimoto, Y., Motalebi, S., Han, C. H. & Lambeth, J. D. The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b 558. J. Biol. Chem. 274, 22999–23005 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roos, D. et al. Hematologically important mutations: the autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol. Dis. 92, 102596 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koker, M. Y. et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J. Allergy Clin. Immunol. 132, 1156–1163 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stasia, M. J. et al. Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. Biochim. Biophys. Acta 1586, 316–330 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rae, J. et al. X-linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am. J. Hum. Genet. 62, 1320–1331 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Milburn, M. V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boog, B. et al. Identification and functional characterization of two novel mutations in the alpha-helical loop (residues 484-503) of CYBB/gp91phox resulting in the rare X91+ variant of chronic granulomatous disease. Hum. Mutat. 33, 471–475 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhen, L., Yu, L. & Dinauer, M. C. Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J. Biol. Chem. 273, 6575–6581 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, X. et al. Mechanistic insights on heme-to-heme transmembrane electron transfer within NADPH oxydases from atomistic simulations. Front. Chem. 9, 650651 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hayward, S. & Lee, R. A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J. Mol. Graph. Model. 21, 181–183 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Veevers, R. & Hayward, S. Methodological improvements for the analysis of domain movements in large biomolecular complexes. Biophys. Physicobiol. 16, 328–336 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Z. et al. A productive NADP+ binding mode of ferredoxin–NADP+ reductase revealed by protein engineering and crystallographic studies. Nat. Struct. Biol. 6, 847–853 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kean, K. M. et al. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily. FEBS J. 284, 3302–3319 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lans, I. et al. Theoretical study of the mechanism of the hydride transfer between ferredoxin-NADP+ reductase and NADP+: the role of Tyr303. J. Am. Chem. Soc. 134, 20544–20553 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Freeman, J. L. & Lambeth, J. D. NADPH oxidase activity is independent of p47phox in vitro. J. Biol. Chem. 271, 22578–22582 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koshkin, V., Lotan, O. & Pick, E. The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J. Biol. Chem. 271, 30326–30329 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takemoto, D., Tanaka, A. & Scott, B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44, 1065–1076 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, W., Wang, M. & Chen, L. A co-expression vector for baculovirus-mediated protein expression in mammalian cells. Biochem. Biophys. Res. Commun. 594, 69–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, A. et al. Location of the epitope for 7D5, a monoclonal antibody raised against human flavocytochrome b558, to the extracellular peptide portion of primate gp91phox. Microbiol. Immunol. 45, 249–257 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. et al. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 576, 315–320 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pleiner, T., Bates, M. & Görlich, D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J. Cell Biol. 217, 1143–1154 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guan, C. et al. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat. Commun. 11, 2478 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, M., Diwu, Z., Panchuk-Voloshina, N. & Haugland, R. P. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253, 162–168 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jesaitis, A. J., Riesselman, M., Taylor, R. M. & Brumfield, S. in NADPH Oxidases (eds. Knaus, U. & Leto, T.) 39–59 (Humana Press, 2019).

  • Patel, A., Toso, D., Litvak, A. & Nogales, E. Efficient graphene oxide coating improves cryo-EM sample preparation and data collection from tilted grids. Preprint at bioRxiv https://doi.org/10.1101/2021.03.08.434344 (2021).

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *