Rosler, R. S. & Stewart, G. H. Impingement of gas jets on liquid surfaces. J. Fluid Mech. 31, 163–174 (1968).
Google Scholar
Mordasov, M. M., Savenkov, A. P. & Chechetov, K. E. Method for analyzing the gas jet impinging on a liquid surface. Tech. Phys. 61, 659–668 (2016).
Google Scholar
Hwang, H. Y. & Irons, G. A. A water model study of impinging gas jets on liquid surfaces. Metall. Mater. Trans. B 43, 302–315 (2012).
Google Scholar
Muñoz-Esparza, D., Buchlin, J.-M., Myrillas, K. & Berger, R. Numerical investigation of impinging gas jets onto deformable liquid layers. Appl. Math. Model. 36, 2687–2700 (2012).
Google Scholar
Park, S., Cvelbar, U., Choe, W. & Moon, S. Y. The creation of electric wind due to the electrohydrodynamic force. Nat. Commun. 9, 371 (2018).
Google Scholar
Lee, J. S. et al. Size limits the formation of liquid jets during bubble bursting. Nat. Commun. 2, 367 (2011).
Google Scholar
Schäfer, A., Harms, H. & Zehnder, A. J. B. Bacterial accumulation at the air−water interface. Environ. Sci. Technol. 32, 3704–3712 (1998).
Google Scholar
Nathanson, G. M., Davidovits, P., Worsnop, D. R. & Kolb, C. E. Dynamics and kinetics at the gas-liquid interface. J. Phys. Chem. 100, 13007–13020 (1996).
Google Scholar
Lacanette, D., Gosset, A., Vincent, S., Buchlin, J.-M. & Arquis, É. Macroscopic analysis of gas-jet wiping: numerical simulation and experimental approach. Phys. Fluids 18, 042103 (2006).
Google Scholar
Whalen, C. B., MacKinnon, J. A. & Talley, L. D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 11, 842–847 (2018).
Google Scholar
Hristov, T. S., Miller, S. D. & Friehe, C. A. Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422, 55–58 (2003).
Google Scholar
Labus, T. L. Gas Jet Impingement on Liquid Surfaces During Weightlessness. Technical Note D-5720 (NASA, 1970).
Labus, T. L. & Aydelott, J. C. Gas-jet Impingement Normal to a Liquid Surface. Technical Note D-6368 (NASA, 1971).
Marthelot, J., Strong, E. F., Reis, P. M. & Burn, P.-T. Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 4477 (2018).
Google Scholar
Gao, T., Mirzadeh, M., Bai, P., Conforti, K. M. & Bazant, M. Z. Active control of viscous fingering using electric fields. Nat. Commun. 10, 4002 (2019).
Google Scholar
He, A. Conformal Mapping and Variational Methods for Interfacial Dynamics in Fluids. PhD thesis, Pennsylvania State Univ. (2011).
Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149–154 (2008).
Google Scholar
Bruggeman, P., Graham, L., Degroote, J., Vierendeels, J. & Leys, C. Water surface deformation in strong electric fields and its influence on electrical breakdown in a metal pin-water electrode system. J. Phys. D 40, 4779–4786 (2007).
Google Scholar
Kawamoto, H. & Umezu, S. Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. J. Phys. D 38, 887–894 (2005).
Google Scholar
van Rens, J. F. M. et al. Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 42, 2622–2623 (2014).
Google Scholar
Park, S., Choe, W., Kim, H. & Park, J. Y. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of the nanosecond-pulsed argon plasma jet. Plasma Sources Sci. Technol. 24, 034003 (2015).
Google Scholar
Korovin, V. M. Effect of tilted electrostatic field on the Kelvin–Helmholtz instability in a liquid dielectric and gas flow. Tech. Phys. 62, 1316–1321 (2017).
Google Scholar
Hayati, I., Bailey, A. I. & Tadros, Th. F. Mechanism of stable jet formation in electrohydrodynamic atomization. Nature 319, 41–43 (1986).
Google Scholar
Fuchs, E. C. et al. The floating water bridge. J. Phys. D 40, 6112–6114 (2007).
Google Scholar
Hand, E. Water doesn’t mind the gap. Nature 449, 517 (2007).
Google Scholar
Banks, R. B. & Chandrasekhara, D. V. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J. Fluid Mech. 15, 13–34 (1963).
Google Scholar
Li, M., Li, Q., Kuang, S. & Zou, Z. Determination of cavity dimensions induced by impingement of gas jets onto a liquid bath. Metall. Mater. Trans. B 47, 116–126 (2016).
Google Scholar
Klarenaar, B. L. M., Guaitella, O., Engeln, R. & Sobota, A. How dielectric, metallic and liquid targets influence the evolution of electron properties in a pulse He jet measured by Thomson and Raman scattering. Plasma Sources Sci. Technol. 27, 085004 (2018).
Google Scholar
Thielicke, W. & Eize, J. S. PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).
Google Scholar
Kee, R. J., Coltrin, M. E. & Glarborg, P. Chemically Reacting Flow: Theory and Practice (John Wiley & Sons, 2003).
Lu, X., Naidis, G. V., Laroussi, M. & Ostrikov, K. Guided ionization waves: theory and experiments. Phys. Rep. 540, 123–166 (2014).
Google Scholar
Hasan, M. I. Numerical Modelling of Atmospheric Pressure Plasma Jet Discharges. PhD thesis, Univ. of Liverpool (2016).
Hagelaar, G. J. M. & Pitchford, L. C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722–733 (2005).
Google Scholar