Strange India All Strange Things About India and world


  • 1.

    Rosler, R. S. & Stewart, G. H. Impingement of gas jets on liquid surfaces. J. Fluid Mech. 31, 163–174 (1968).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Mordasov, M. M., Savenkov, A. P. & Chechetov, K. E. Method for analyzing the gas jet impinging on a liquid surface. Tech. Phys. 61, 659–668 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Hwang, H. Y. & Irons, G. A. A water model study of impinging gas jets on liquid surfaces. Metall. Mater. Trans. B 43, 302–315 (2012).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Muñoz-Esparza, D., Buchlin, J.-M., Myrillas, K. & Berger, R. Numerical investigation of impinging gas jets onto deformable liquid layers. Appl. Math. Model. 36, 2687–2700 (2012).

    MathSciNet 
    Article 

    Google Scholar 

  • 5.

    Park, S., Cvelbar, U., Choe, W. & Moon, S. Y. The creation of electric wind due to the electrohydrodynamic force. Nat. Commun. 9, 371 (2018).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Lee, J. S. et al. Size limits the formation of liquid jets during bubble bursting. Nat. Commun. 2, 367 (2011).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Schäfer, A., Harms, H. & Zehnder, A. J. B. Bacterial accumulation at the air−water interface. Environ. Sci. Technol. 32, 3704–3712 (1998).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Nathanson, G. M., Davidovits, P., Worsnop, D. R. & Kolb, C. E. Dynamics and kinetics at the gas-liquid interface. J. Phys. Chem. 100, 13007–13020 (1996).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Lacanette, D., Gosset, A., Vincent, S., Buchlin, J.-M. & Arquis, É. Macroscopic analysis of gas-jet wiping: numerical simulation and experimental approach. Phys. Fluids 18, 042103 (2006).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Whalen, C. B., MacKinnon, J. A. & Talley, L. D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 11, 842–847 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Hristov, T. S., Miller, S. D. & Friehe, C. A. Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422, 55–58 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Labus, T. L. Gas Jet Impingement on Liquid Surfaces During Weightlessness. Technical Note D-5720 (NASA, 1970).

  • 13.

    Labus, T. L. & Aydelott, J. C. Gas-jet Impingement Normal to a Liquid Surface. Technical Note D-6368 (NASA, 1971).

  • 14.

    Marthelot, J., Strong, E. F., Reis, P. M. & Burn, P.-T. Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 4477 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Gao, T., Mirzadeh, M., Bai, P., Conforti, K. M. & Bazant, M. Z. Active control of viscous fingering using electric fields. Nat. Commun. 10, 4002 (2019).

    ADS 
    Article 

    Google Scholar 

  • 16.

    He, A. Conformal Mapping and Variational Methods for Interfacial Dynamics in Fluids. PhD thesis, Pennsylvania State Univ. (2011).

  • 17.

    Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149–154 (2008).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Bruggeman, P., Graham, L., Degroote, J., Vierendeels, J. & Leys, C. Water surface deformation in strong electric fields and its influence on electrical breakdown in a metal pin-water electrode system. J. Phys. D 40, 4779–4786 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Kawamoto, H. & Umezu, S. Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. J. Phys. D 38, 887–894 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    van Rens, J. F. M. et al. Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 42, 2622–2623 (2014).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Park, S., Choe, W., Kim, H. & Park, J. Y. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of the nanosecond-pulsed argon plasma jet. Plasma Sources Sci. Technol. 24, 034003 (2015).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Korovin, V. M. Effect of tilted electrostatic field on the Kelvin–Helmholtz instability in a liquid dielectric and gas flow. Tech. Phys. 62, 1316–1321 (2017).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Hayati, I., Bailey, A. I. & Tadros, Th. F. Mechanism of stable jet formation in electrohydrodynamic atomization. Nature 319, 41–43 (1986).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Fuchs, E. C. et al. The floating water bridge. J. Phys. D 40, 6112–6114 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Hand, E. Water doesn’t mind the gap. Nature 449, 517 (2007).

    Article 

    Google Scholar 

  • 26.

    Banks, R. B. & Chandrasekhara, D. V. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J. Fluid Mech. 15, 13–34 (1963).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Li, M., Li, Q., Kuang, S. & Zou, Z. Determination of cavity dimensions induced by impingement of gas jets onto a liquid bath. Metall. Mater. Trans. B 47, 116–126 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Klarenaar, B. L. M., Guaitella, O., Engeln, R. & Sobota, A. How dielectric, metallic and liquid targets influence the evolution of electron properties in a pulse He jet measured by Thomson and Raman scattering. Plasma Sources Sci. Technol. 27, 085004 (2018).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Thielicke, W. & Eize, J. S. PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).

    Article 

    Google Scholar 

  • 30.

    Kee, R. J., Coltrin, M. E. & Glarborg, P. Chemically Reacting Flow: Theory and Practice (John Wiley & Sons, 2003).

  • 31.

    Lu, X., Naidis, G. V., Laroussi, M. & Ostrikov, K. Guided ionization waves: theory and experiments. Phys. Rep. 540, 123–166 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Hasan, M. I. Numerical Modelling of Atmospheric Pressure Plasma Jet Discharges. PhD thesis, Univ. of Liverpool (2016).

  • 33.

    Hagelaar, G. J. M. & Pitchford, L. C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722–733 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *