Pfisterer, J. H., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).
Google Scholar
Cao, L. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019).
Google Scholar
Jia, Y. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2, 688–695 (2019).
Google Scholar
Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the “active sites” of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).
Google Scholar
Liang, Y., McLaughlin, D., Csoklich, C., Schneider, O. & Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 12, 351–357 (2019).
Google Scholar
Kajiwara, R., Asaumi, Y., Nakamura, M. & Hoshi, N. Active sites for the hydrogen oxidation and the hydrogen evolution reactions on the high index planes of Pt. J. Electroanal. Chem. 657, 61–65 (2011).
Google Scholar
Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).
Google Scholar
Calle-Vallejo, F. et al. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 8, 2283–2289 (2017).
Google Scholar
Hoshi, N., Nakamura, M. & Hitotsuyanagi, A. Active sites for the oxygen reduction reaction on the high index planes of Pt. Electrochim. Acta 112, 899–904 (2013).
Google Scholar
Neugebohren, J. et al. Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature 558, 280–283 (2018).
Google Scholar
Wang, H. & An, W. Promoting the oxygen reduction reaction with gold at step/edge sites of Ni@ AuPt core–shell nanoparticles. Catal. Sci. Technol. 7, 596–606 (2017).
Google Scholar
Rück, M., Bandarenka, A., Calle-Vallejo, F. & Gagliardi, A. Oxygen reduction reaction: rapid prediction of mass activity of nanostructured platinum electrocatalysts. J. Phys. Chem. Lett. 9, 4463–4468 (2018).
Google Scholar
Ha, Y. et al. In situ surface stress measurement and computational analysis examining the oxygen reduction reaction on Pt and Pd. Electrochim. Acta 260, 400–406 (2018).
Google Scholar
Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).
Google Scholar
Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).
Google Scholar
Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).
Google Scholar
Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).
Google Scholar
Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).
Streibel, V., Choksi, T. S. & Abild-Pedersen, F. Predicting metal–metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. J. Chem. Phys. 152, 094701 (2020).
Google Scholar
He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).
Google Scholar
Sakong, S., Fischer, J. M., Mahlberg, D., Behm, R. J. & Groß, A. Influence of step and island edges on local adsorption properties: hydrogen adsorption on Pt monolayer island modified Ru(0001) electrodes. Electrocatalysis 8, 530–539 (2017).
Google Scholar
Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).
Google Scholar
Hartmann, H., Diemant, T., Bansmann, J. & Behm, R. J. Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces. Phys. Chem. Chem. Phys. 14, 10919–10934 (2012).
Google Scholar
Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).
Google Scholar
Gómez-Marín, A. M. & Feliu, J. M. Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal. Today 244, 172–176 (2015).
Briega-Martos, V., Herrero, E. & Feliu, J. M. Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: surface charge effects and mechanistic consequences. Electrochim. Acta 334, 135452 (2020).
Google Scholar
Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011).
Google Scholar
Bergbreiter, A., Alves, O. B. & Hoster, H. E. Entropy effects in atom distribution and electrochemical properties of AuxPt1−x/Pt(111) surface alloys. ChemPhysChem 11, 1505–1512 (2010).
Google Scholar
Brimaud, S., Engstfeld, A., Alves, O. & Behm, R. Structure–reactivity correlation in the oxygen reduction reaction: activity of structurally well defined AuxPt1−x/Pt (111) monolayer surface alloys. J. Electroanal. Chem. 716, 71–79 (2014).
Google Scholar
Kodama, K., Jinnouchi, R., Takahashi, N., Murata, H. & Morimoto, Y. Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138, 4194–4200 (2016).
Google Scholar
McCrum, I. T. & Koper, M. T. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).
Google Scholar
Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).
Google Scholar
Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).
Google Scholar
Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).
Google Scholar
Jiao, L., Liu, E., Hwang, S., Mukerjee, S. & Jia, Q. Compressive strain reduces the hydrogen evolution and oxidation reaction activity of platinum in alkaline solution. ACS Catal. 11, 8165–8173 (2021).
Google Scholar
Rossmeisl, J. et al. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 5, 8335–8342 (2012).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Google Scholar
Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Nielsen, O. & Martin, R. M. Quantum-mechanical theory of stress and force. Phys. Rev. B 32, 3780 (1985).
Google Scholar
Chase, M. W. NIST-JANAF Thermochemical Tables Vol. 9 (American Chemical Society, 1998).
Zeng, Z. & Greeley, J. Characterization of oxygenated species at water/Pt (111) interfaces from DFT energetics and XPS simulations. Nano Energy 29, 369–377 (2016).
Google Scholar
Wang, L. et al. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Lett. 17, 3391–3395 (2017).
Google Scholar
Wang, L. et al. Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability. ACS Catal. 8, 35–42 (2018).
Google Scholar
Christensen, R., Hansen, H. A., Dickens, C. F., Nørskov, J. K. & Vegge, T. Functional independent scaling relation for ORR/OER catalysts. J. Phys. Chem. C 120, 24910–24916 (2016).
Google Scholar
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).
Google Scholar
Martínez, J. I. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).
Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 407, 1–11 (1996).
Kibler, L. A. Preparation and characterization of noble metal single crystal electrode surfaces. Int. Soc. Electrochem. 14, 20 (2003).
Bard, A. J. & Faulkner, L. R. Fundamentals and applications: electrochemical methods. Electrochem. Methods 2, 580–632 (2001).
Mayrhofer, K. J. J. Oxygen Reduction and Carbon Monoxide Oxidation on Pt – from Model to Real Systems for Fuel Cell Electrocatalysis PhD thesis, Vienna Univ. Technology (2005).