Strange IndiaStrange India


  • Pfisterer, J. H., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, L. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019).

    CAS 

    Google Scholar 

  • Jia, Y. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2, 688–695 (2019).

    CAS 

    Google Scholar 

  • Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the “active sites” of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Liang, Y., McLaughlin, D., Csoklich, C., Schneider, O. & Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 12, 351–357 (2019).

    CAS 

    Google Scholar 

  • Kajiwara, R., Asaumi, Y., Nakamura, M. & Hoshi, N. Active sites for the hydrogen oxidation and the hydrogen evolution reactions on the high index planes of Pt. J. Electroanal. Chem. 657, 61–65 (2011).

    CAS 

    Google Scholar 

  • Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Calle-Vallejo, F. et al. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 8, 2283–2289 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hoshi, N., Nakamura, M. & Hitotsuyanagi, A. Active sites for the oxygen reduction reaction on the high index planes of Pt. Electrochim. Acta 112, 899–904 (2013).

    CAS 

    Google Scholar 

  • Neugebohren, J. et al. Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature 558, 280–283 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. & An, W. Promoting the oxygen reduction reaction with gold at step/edge sites of Ni@ AuPt core–shell nanoparticles. Catal. Sci. Technol. 7, 596–606 (2017).

    MathSciNet 
    CAS 

    Google Scholar 

  • Rück, M., Bandarenka, A., Calle-Vallejo, F. & Gagliardi, A. Oxygen reduction reaction: rapid prediction of mass activity of nanostructured platinum electrocatalysts. J. Phys. Chem. Lett. 9, 4463–4468 (2018).

    PubMed 

    Google Scholar 

  • Ha, Y. et al. In situ surface stress measurement and computational analysis examining the oxygen reduction reaction on Pt and Pd. Electrochim. Acta 260, 400–406 (2018).

    CAS 

    Google Scholar 

  • Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    ADS 

    Google Scholar 

  • Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  • Streibel, V., Choksi, T. S. & Abild-Pedersen, F. Predicting metal–metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. J. Chem. Phys. 152, 094701 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sakong, S., Fischer, J. M., Mahlberg, D., Behm, R. J. & Groß, A. Influence of step and island edges on local adsorption properties: hydrogen adsorption on Pt monolayer island modified Ru(0001) electrodes. Electrocatalysis 8, 530–539 (2017).

    CAS 

    Google Scholar 

  • Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed 

    Google Scholar 

  • Hartmann, H., Diemant, T., Bansmann, J. & Behm, R. J. Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces. Phys. Chem. Chem. Phys. 14, 10919–10934 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).

    CAS 

    Google Scholar 

  • Gómez-Marín, A. M. & Feliu, J. M. Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal. Today 244, 172–176 (2015).

    Google Scholar 

  • Briega-Martos, V., Herrero, E. & Feliu, J. M. Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: surface charge effects and mechanistic consequences. Electrochim. Acta 334, 135452 (2020).

    CAS 

    Google Scholar 

  • Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bergbreiter, A., Alves, O. B. & Hoster, H. E. Entropy effects in atom distribution and electrochemical properties of AuxPt1−x/Pt(111) surface alloys. ChemPhysChem 11, 1505–1512 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Brimaud, S., Engstfeld, A., Alves, O. & Behm, R. Structure–reactivity correlation in the oxygen reduction reaction: activity of structurally well defined AuxPt1−x/Pt (111) monolayer surface alloys. J. Electroanal. Chem. 716, 71–79 (2014).

    CAS 

    Google Scholar 

  • Kodama, K., Jinnouchi, R., Takahashi, N., Murata, H. & Morimoto, Y. Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138, 4194–4200 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • McCrum, I. T. & Koper, M. T. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiao, L., Liu, E., Hwang, S., Mukerjee, S. & Jia, Q. Compressive strain reduces the hydrogen evolution and oxidation reaction activity of platinum in alkaline solution. ACS Catal. 11, 8165–8173 (2021).

    CAS 

    Google Scholar 

  • Rossmeisl, J. et al. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 5, 8335–8342 (2012).

    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nielsen, O. & Martin, R. M. Quantum-mechanical theory of stress and force. Phys. Rev. B 32, 3780 (1985).

    ADS 
    CAS 

    Google Scholar 

  • Chase, M. W. NIST-JANAF Thermochemical Tables Vol. 9 (American Chemical Society, 1998).

  • Zeng, Z. & Greeley, J. Characterization of oxygenated species at water/Pt (111) interfaces from DFT energetics and XPS simulations. Nano Energy 29, 369–377 (2016).

    CAS 

    Google Scholar 

  • Wang, L. et al. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Lett. 17, 3391–3395 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability. ACS Catal. 8, 35–42 (2018).

    CAS 

    Google Scholar 

  • Christensen, R., Hansen, H. A., Dickens, C. F., Nørskov, J. K. & Vegge, T. Functional independent scaling relation for ORR/OER catalysts. J. Phys. Chem. C 120, 24910–24916 (2016).

    CAS 

    Google Scholar 

  • Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  • Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Martínez, J. I. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Google Scholar 

  • Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 407, 1–11 (1996).

    Google Scholar 

  • Kibler, L. A. Preparation and characterization of noble metal single crystal electrode surfaces. Int. Soc. Electrochem. 14, 20 (2003).

    Google Scholar 

  • Bard, A. J. & Faulkner, L. R. Fundamentals and applications: electrochemical methods. Electrochem. Methods 2, 580–632 (2001).

    Google Scholar 

  • Mayrhofer, K. J. J. Oxygen Reduction and Carbon Monoxide Oxidation on Pt – from Model to Real Systems for Fuel Cell Electrocatalysis PhD thesis, Vienna Univ. Technology (2005).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *