Strange IndiaStrange India


  • Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tighineanu, P. et al. Single-photon superradiance from a quantum dot. Phys. Rev. Lett. 116, 163604 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, C. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).

    Article 
    PubMed 

    Google Scholar 

  • García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kaplan, A. E. K. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Timothy Noe, G. II et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nat. Phys. 8, 219–224 (2012).

    Article 

    Google Scholar 

  • Bonifacio, R. & Lugiato, L A. Cooperative radiation processes in two-level systems: Superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).

    Article 
    ADS 

    Google Scholar 

  • Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Svidzinsky, A. A. & Scully, M. O. Evolution of collective N atom states in single photon superradiance: effect of virtual Lamb shift processes. Opt. Commun. 282, 2894–2897 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rashba, É. L. & Gurgenishvili, G. É. Edge absorption theory in semiconductors. Sov. Phys. Solid State 4, 759–760 (1962).

    Google Scholar 

  • Itoh, T., Ikehara, T. & Iwabuchi, Y. Quantum confinement of excitons and their relaxation processes in CuCl microcrystals. J. Lumin. 45, 29–33 (1990).

    Article 
    CAS 

    Google Scholar 

  • Nakamura, A., Yamada, H. & Tokizaki, T. Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses. Phys. Rev. B 40, 8585–8588 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Misawa, K., Yao, H., Hayashi, T. & Kobayashi, T. Superradiative emission from CdS microcrystallites. J. Cryst. Growth 117, 617–621 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Scott, R. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 12, 1155–1160 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Potma, E. O. & Wiersma, D. A. Exciton superradiance in aggregates: the effect of disorder, higher order exciton-phonon coupling and dimensionality. J. Chem. Phys. 108, 4894–4903 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blundell, S. A. & Guet, C. All-order correlation of single excitons in nanocrystals using a kp envelope-function approach: application to lead halide perovskites. Phys. Rev. B 105, 155420 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Philbin, J. P. & Rabani, E. Electron–hole correlations govern auger recombination in nanostructures. Nano Lett. 18, 7889–7895 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V, I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z. et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett. 2, 1621–1627 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sercel, P. C., Lyons, J. L., Bernstein, N. & Efros, A. L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 151, 234106 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Nguyen, T. P. T., Blundell, S. A. & Guet, C. Calculation of the biexciton shift in nanocrystals of inorganic perovskites. Phys. Rev. B 101, 125424 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grigoryev, P. S., Belykh, V. V., Yakovlev, D. R., Lhuillier, E. & Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huynh, U. N. et al. Transient quantum beatings of trions in hybrid organic tri-iodine perovskite single crystal. Nat. Commun. 13, 1428 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D. & Klimov, V. I. Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Li, Y., Luo, X., Ding, T., Lu, X. & Wu, K. Size‐ and halide‐dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 132, 14398–14401 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rainò, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramade, J. et al. Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 10, 6393–6401 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J. Opt. 20, 073002 (2018).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y. et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat. Commun. 7, 10387 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubin, G. et al. Resolving the controversy in biexciton binding energy of cesium lead halide perovskite nanocrystals through heralded single-particle spectroscopy. ACS Nano 15, 19581–19587 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bera, S., Behera, R. K. & Pradhan, N. α-Halo ketone for polyhedral perovskite nanocrystals: Evolutions, shape conversions, ligand chemistry, and self-assembly. J. Am. Chem. Soc. 142, 20865–20874 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *