Strange IndiaStrange India


  • Benfey, P. N. et al. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57–70 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheres, B. et al. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53–62 (1995).

    Article 
    CAS 

    Google Scholar 

  • Cruz-Ramírez, A. et al. A bistable circuit involving SCARECROW–RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002–1015 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baena-López, L. A., Baonza, A. & García-Bellido, A. The orientation of cell divisions determines the shape of Drosophila organs. Curr. Biol. 15, 1640–1644 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Facette, M. R., Rasmussen, C. G. & Van Norman, J. M. A plane choice: coordinating timing and orientation of cell division during plant development. Curr. Opin. Plant Biol. 47, 47–55 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chhabra, S. N. & Booth, B. W. Asymmetric cell division of mammary stem cells. Cell Div. 16, 5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, A. E. et al. Lessons from development: a role for asymmetric stem cell division in cancer. Stem Cell Res. 4, 3 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kipreos, E. T. & van den Heuvel, S. Developmental control of the cell cycle: insights from Caenorhabditis elegans. Genetics 211, 797–829 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komaki, S. & Sugimoto, K. Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol. 53, 953–964 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer, H. M. et al. Fluctuations of the transcription factor atml1 generate the pattern of giant cells in the Arabidopsis sepal. eLife 6, e19131 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, H. et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Levesque, M. P. et al. Whole-genome analysis of the short-root developmental pathway in Arabidopsis. PLoS Biol. 4, 739–752 (2006).

    CAS 

    Google Scholar 

  • Sozzani, R. et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128–132 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Tyson, J. J. & Novak, B. A dynamical paradigm for molecular cell biology. Trends Cell Biol. 30, 504–515 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. Science 322, 390–395 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filipczyk, A. et al. Network plasticity of pluripotency transcription factors in embryonic stem cells. Nat. Cell Biol. 17, 1235–1246 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoppe, P. S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299–302 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, B. O., Ahrends, R. & Teruel, M. N. Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep. 2, 976–990 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etzrodt, M. & Schroeder, T. Illuminating stem cell transcription factor dynamics: long-term single-cell imaging of fluorescent protein fusions. Curr. Opin. Cell Biol. 49, 77–83 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skylaki, S., Hilsenbeck, O. & Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 34, 1137–1144 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. 35, 655–681 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ovečka, M. et al. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 4, 639–650 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Aoyama, T. & Chua, N.-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakajima, K., Sena, G., Nawy, T. & Benfey, P. N. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307–311 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Trivedi, V. et al. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration. Biomed. Opt. Express 6, 2056–2066 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q., Bhattacharya, S. & Andersen, M. E. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol. 3, 130031 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desvoyes, B., Arana-Echarri, A., Barea, M. D. & Gutierrez, C. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nat. Plants 6, 1330–1334 (2020). 2020 611.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cools, T., Iantcheva, A., Maes, S., Van den Daele, H. & De Veylder, L. A replication stress-induced synchronization method for Arabidopsis thaliana root meristems. Plant J. Cell Mol. Biol. 64, 705–714 (2010).

    Article 
    CAS 

    Google Scholar 

  • Yao, G., Lee, T. J., Mori, S., Nevins, J. R. & You, L. A bistable Rb–E2F switch underlies the restriction point. Nat. Cell Biol. 10, 476–482 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koizumi, K., Hayashi, T., Wu, S. & Gallagher, K. L. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc. Natl Acad. Sci. USA 109, 13010–13015 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crook, A. D. et al. BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots. Proc. Natl Acad. Sci. USA 117, 32750–32756 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boniotti, M. B. & Gutierrez, C. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J. 28, 341–350 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers-the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahni, R. & Birnbaum, K. D. Week-long imaging of cell divisions in the Arabidopsis root meristem. Plant Methods 15, 30 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stallaert, W., Kedziora, K. M., Chao, H. X. & Purvis, J. E. Bistable switches as integrators and actuators during cell cycle progression. FEBS Lett. 593, 2805–2816 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zluhan-Martínez, E. et al. Beyond what your retina can see: similarities of retinoblastoma function between plants and animals, from developmental processes to epigenetic regulation. Int. J. Mol. Sci. 21, 4925 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimotohno, A., Aki, S. S., Takahashi, N. & Umeda, M. Regulation of the plant cell cycle in response to hormones and the environment. Annu. Rev. Plant Biol. 72, 273–296 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tilmann, C., Kimble, J. & Cyclin, D. Regulation of a sexually dimorphic asymmetric cell division. Dev. Cell 9, 489–499 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costa, S. Are division plane determination and cell-cycle progression coordinated? New Phytol. 213, 16–21 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Noatynska, A., Tavernier, N., Gotta, M. & Pintard, L. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open Biol. 3, 130083 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. Cyclin-dependent kinase 4 and 6 inhibitors as breast cancer therapy: research progress and prospects. Pharm. Chem. J. 56, 71–77 (2022).

    Article 
    CAS 

    Google Scholar 

  • Brighi, N. et al. The cyclin-dependent kinases pathway as a target for prostate cancer treatment: rationale and future perspectives. Crit. Rev. Oncol. Hematol. 157, 103199 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • VanArsdale, T., Boshoff, C., Arndt, K. T. & Abraham, R. T. Molecular pathways: targeting the cyclin D–CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905–2910 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. & Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11, 558–572 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maizel, A. Arabidopsis root meristem. figshare https://doi.org/10.6084/m9.figshare.4786369.v1 (2017).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *