Strange IndiaStrange India


  • Murray, J. D. Mathematical Biology: I. An Introduction (Springer, 2007).

  • Budrene, E. O. & Berg, H. C. Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kessler, D. A. & Levine, H. Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. Phys. Rev. E 48, 4801 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, C. et al. Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, B. et al. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 369, 71–77 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delarue, M. et al. Self-driven jamming in growing microbial populations. Nat. Phys. 12, 762–766 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geyer, D., Martin, D., Tailleur, J. & Bartolo, D. Freezing a flock: motility-induced phase separation in polar active liquids. Phys. Rev. 9, 031043 (2019).

    Article 
    CAS 

    Google Scholar 

  • Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).

    Article 
    ADS 

    Google Scholar 

  • Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mandal, R., Bhuyan, P. J., Chaudhuri, P., Dasgupta, C. & Rao, M. Extreme active matter at high densities. Nat. Commun. 11, 2581 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, M., Suchla, D. A., Dunkel, J. & Wilczek, M. Emergence and melting of active vortex crystals. Nat. Commun. 12, 5630 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunkel, J., Heidenreich, S., Bär, M. & Goldstein, R. E. Minimal continuum theories of structure formation in dense active fluids. New J. Phys. 15, 045016 (2013).

    Article 
    ADS 

    Google Scholar 

  • Reinken, H., Heidenreich, S., Bär, M. & Klapp, S. H. L. Anisotropic mesoscale turbulence and pattern formation in microswimmer suspensions induced by orienting external fields. New J. Phys. 21, 013037 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Doostmohammadi, A., Adamer, M. F., Thampi, S. P. & Yeomans, J. M. Stabilization of active matter by flow-vortex lattices and defect ordering. Nat. Commun. 7, 10557 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aranson, I. Bacterial active matter. Rep. Prog. Phys. 85, 076601 (2022).

  • Zahn, K., Maret, G., Ruß, C. & von Grünberg, H. H. Three-particle correlations in simple liquids. Phys. Rev. Lett. 91, 115502 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O. & Goldstein, R. E. Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Nishiguchi, D., Aranson, I. S., Snezhko, A. & Sokolov, A. Engineering bacterial vortex lattice via direct laser lithography. Nat. Commun. 9, 4486 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S., Shankar, S., Marchetti, M. C. & Wu, Y. Viscoelastic control of spatiotemporal order in bacterial active matter. Nature 590, 80–84 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, H., Huang, Y., Zhang, R. & Wu, Y. Autonomous waves and global motion modes in living active solids. Nat. Phys. 19, 46–51 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    Article 
    ADS 

    Google Scholar 

  • Oza, A. U., Heidenreich, S. & Dunkel, J. Generalized Swift-Hohenberg models for dense active suspensions. Eur. Phys. J. E 39, 97 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Cisneros, L. H., Cortez, R., Dombrowski, C., Goldstein, R. E. & Kessler, J. O. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43, 737–753 (2007).

    Article 

    Google Scholar 

  • Cisneros, L. H., Kessler, J. O., Ganguly, S. & Goldstein, R. E. Dynamics of swimming bacteria: transition to directional order at high concentration. Phys. Rev. E 83, 061907 (2011).

    Article 
    ADS 

    Google Scholar 

  • Sokolov, A. & Aranson, I. S. Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103, 148101 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • López, H. M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Martinez, V. A. et al. A combined rheometry and imaging study of viscosity reduction in bacterial suspensions. Proc. Natl Acad. Sci. USA 117, 2326–2331 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Dunkel, J. et al. Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Heidenreich, S., Dunkel, J., Klapp, S. H. & Bär, M. Hydrodynamic length-scale selection in microswimmer suspensions. Phys. Rev. E 94, 020601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nakane, D., Odaka, S., Suzuki, K. & Nishizaka, T. Large-scale vortices with dynamic rotation emerged from monolayer collective motion of gliding Flavobacteria. J. Bacteriol. 203, e0007321 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Patra, P. et al. Collective migration reveals mechanical flexibility of malaria parasites. Nat. Phys. 18, 586–594 (2022).

    Article 
    CAS 

    Google Scholar 

  • Supekar, R. et al. Learning hydrodynamic equations for active matter from particle simulations and experiments. Proc. Natl Acad. Sci. USA 120, e2206994120 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, M., Bos, W. J. & Wilczek, M. Turbulence and turbulent pattern formation in a minimal model for active fluids. Phys. Rev. Fluids 3, 061101 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jacobson, A. G. Somitomeres: mesodermal segments of vertebrate embryos. Development 104, 209–220 (1988).

    Article 
    PubMed 

    Google Scholar 

  • Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R. E. & Stern, C. D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Słomka, J. & Dunkel, J. Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2, 043102 (2017).

    Article 
    ADS 

    Google Scholar 

  • Mukherjee, A., Walker, J., Weyant, K. B. & Schroeder, C. M. Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS ONE 8, e64753 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zuo, W. & Wu, Y. Dynamic motility selection drives population segregation in a bacterial swarm. Proc. Natl Acad. Sci. USA 117, 4693–4700 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C., Liu, S., Shi, X. Q., Chate, H. & Wu, Y. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions. Nature 542, 210–214 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Swift, J. & Hohenberg, P. C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977).

    Article 
    ADS 

    Google Scholar 

  • Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danaila, I., Joly, P., Kaber, S. M. Postel, M. (eds) An Introduction to Scientific Computing: Twelve Computational Projects Solved with MATLAB (Springer, 2007).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *