Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge Univ. Press, 2013).
Wen, X.-G. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
Ezawa, Z. F. Quantum Hall Effects: Field Theoretical Approach and Related Topics (World Scientific, 2008).
Weeks, C., Rosenberg, G., Seradjeh, B. & Franz, M. Anyons in a weakly interacting system. Nat. Phys. 3, 796–801 (2007).
Google Scholar
Rabello, S. J. A gauge theory of one-dimensional anyons. Phys. Lett. B 363, 180–183 (1995).
Google Scholar
Benetton Rabello, S. J. 1D generalized statistics gas: a gauge theory approach. Phys. Rev. Lett. 76, 4007–4009 (1996).
Google Scholar
Aglietti, U., Griguolo, L., Jackiw, R., Pi, S.-Y. & Seminara, D. Anyons and chiral solitons on a line. Phys. Rev. Lett. 77, 4406–4409 (1996).
Google Scholar
Jackiw, R. A nonrelativistic chiral soliton in one dimension. J. Nonlinear Math. Phys. 4, 261–270 (1997).
Google Scholar
Griguolo, L. & Seminara, D. Chiral solitons from dimensional reduction of Chern–Simons gauged non-linear Schrödinger equation: classical and quantum aspects. Nucl. Phys. B 516, 467–498 (1998).
Google Scholar
Edmonds, M. J., Valiente, M., Juzeliūnas, G., Santos, L. & Öhberg, P. Simulating an interacting gauge theory with ultracold Bose gases. Phys. Rev. Lett. 110, 085301 (2013).
Google Scholar
Chisholm, C. S. et al. Encoding a one-dimensional topological gauge theory in a Raman-coupled Bose–Einstein condensate. Preprint https://arxiv.org/abs/2204.05386 (2022).
Valentí-Rojas, G., Westerberg, N. & Öhberg, P. Synthetic flux attachment. Phys. Rev. Res. 2, 033453 (2020).
Google Scholar
Wiese, U. J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).
Google Scholar
Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).
Google Scholar
Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 57, 388–412 (2016).
Google Scholar
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Google Scholar
Klco, N., Roggero, A. & Savage, M. J. Standard model physics and the digital quantum revolution: thoughts about the interface. Rep. Prog. Phys. 85, 064301 (2022).
Fukushima, K. & Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 74, 014001 (2011).
Google Scholar
Berges, J., Heller, M. P., Mazeliauskas, A. & Venugopalan, R. QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys. 93, 035003 (2021).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Google Scholar
Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).
Google Scholar
Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).
Google Scholar
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).
Google Scholar
Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).
Google Scholar
Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).
Google Scholar
Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).
Dai, H.-N. et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nat. Phys. 13, 1195–1200 (2017).
Google Scholar
Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).
Google Scholar
Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019).
Google Scholar
Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).
Google Scholar
Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).
Google Scholar
Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).
Google Scholar
Lienhard, V. et al. Realization of a density-dependent peierls phase in a synthetic, spin–orbit coupled Rydberg system. Phys. Rev. X 10, 021031 (2020).
Google Scholar
Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).
Google Scholar
Yao, K.-X., Zhang, Z. & Chin, C. Domain-wall dynamics in Bose–Einstein condensates with synthetic gauge fields. Nature 602, 68–72 (2022).
Google Scholar
Kundu, A. Exact solution of double δ function Bose gas through an interacting anyon gas. Phys. Rev. Lett. 83, 1275–1278 (1999).
Google Scholar
Muschik, C. et al. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys. 19, 103020 (2017).
Google Scholar
Sanz, J., Frölian, A., Chisholm, C. S., Cabrera, C. R. & Tarruell, L. Interaction control and bright solitons in coherently coupled Bose–Einstein condensates. Phys. Rev. Lett. 128, 013201 (2022).
Google Scholar
Williams, R. A. et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2012).
Google Scholar
Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).
Google Scholar
Spielman, I. B. Raman processes and effective gauge potentials. Phys. Rev. A 79, 063613 (2009).
Google Scholar
Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).
Google Scholar
Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).
Google Scholar
Marchant, A. L. et al. Controlled formation and reflection of a bright solitary matter-wave. Nat. Commun. 4, 1865 (2013).
Google Scholar
Khamehchi, M. A. et al. Negative-mass hydrodynamics in a spin–orbit–coupled Bose–Einstein condensate. Phys. Rev. Lett. 118, 155301 (2017).
Google Scholar
Keilmann, T., Lanzmich, S., McCulloch, I. & Roncaglia, M. Statistically induced phase transitions and anyons in 1D optical lattices. Nat. Commun. 2, 361 (2011).
Google Scholar
Greschner, S. & Santos, L. Anyon Hubbard model in one-dimensional optical lattices. Phys. Rev. Lett. 115, 053002 (2015).
Google Scholar
Sträter, C., Srivastava, S. C. L. & Eckardt, A. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).
Google Scholar
Bonkhoff, M. et al. Bosonic continuum theory of one-dimensional lattice anyons. Phys. Rev. Lett. 126, 163201 (2021).
Google Scholar
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
Google Scholar
Floreanini, R. & Jackiw, R. Self-dual fields as charge-density solitons. Phys. Rev. Lett. 59, 1873–1876 (1987).
Google Scholar
Faddeev, L. & Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988).
Google Scholar
Jackiw, R. in Diverse Topics in Theoretical and Mathematical Physics 367—381 (World Scientific, 1995).
Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: fast, scalable simulation of coupled stochastic partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013).
Google Scholar
Roy, S. et al. Test of the universality of the three-body Efimov parameter at narrow Feshbach resonances. Phys. Rev. Lett. 111, 053202 (2013).
Google Scholar
Wei, R. & Mueller, E. J. Magnetic-field dependence of Raman coupling in alkali-metal atoms. Phys. Rev. A 87, 042514 (2013).
Google Scholar
Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).
Google Scholar
Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).
Google Scholar
Carr, L. D. & Castin, Y. Dynamics of a matter-wave bright soliton in an expulsive potential. Phys. Rev. A 66, 063602 (2002).
Google Scholar
Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301–304 (2018).
Google Scholar