Strange IndiaStrange India


  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/ZENODO.3831673 (2019).

  • Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Guillaume, T. et al. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat. Commun. 9, 2388 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rembold, K., Mangopo, H., Tjitrosoedirdjo, S. S. & Kreft, H. Plant diversity, forest dependency and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. 213, 234–242 (2017).

    Article 

    Google Scholar 

  • Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Turner, E. C. & Foster, W. A. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 25, 23–30 (2009).

    Article 

    Google Scholar 

  • Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

    Article 

    Google Scholar 

  • Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. J. Anim. Ecol. 88, 1845–1859 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schwarz, B. et al. Warming alters the energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7, 895–900 (2017).

    Article 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).

    Article 

    Google Scholar 

  • Rosenberg, et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549–551 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).

    Article 

    Google Scholar 

  • Dial, R. J., Ellwood, M. D. F., Turner, E. C. & Foster, W. A. Arthropod abundance, canopy structure and microclimate in a Bornean lowland tropical rain forest. Biotropica 38, 643–652 (2006).

    Article 

    Google Scholar 

  • Raich, J. W., Clark, D. A., Schwendenmann, L. & Wood, T. E. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLoS ONE 9, e100275 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jochum, M. et al. Decreasing stoichiometric resource quality drives compensatory feeding across trophic levels in tropical litter invertebrate communities. Am. Nat. 190, 131–143 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Terborgh, J., Robinson, S. K., Parker, T. A., Munn, C. A. & Pierpont, N. Structure and organization of an Amazonian forest bird community. Ecol. Monogr. 60, 213–238 (1990).

    Article 

    Google Scholar 

  • Mueller, K. E. et al. Light, earthworms and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S. Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soil. 51, 697–705 (2015).

    Article 
    CAS 

    Google Scholar 

  • Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators and trade-offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Prabowo, W. E. et al. Bird responses to lowland rainforest conversion in Sumatran smallholder landscapes, Indonesia. PLoS ONE 11, e0154876 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramos, D. et al. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ 10, e13898 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulmatiski, A. & Beard, K. H. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol. Biochem. 43, 823–830 (2011).

    Article 
    CAS 

    Google Scholar 

  • Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel. eLife 11, e75428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Potapov, A. et al. Oil palm and rubber expansion facilitates earthworm invasion in Indonesia. Biol. Invasions 23, 2783–2795 (2021).

    Article 

    Google Scholar 

  • Potapov, A. M. et al. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology 101, e02957 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Rakotomalala, A. A. N. A., Ficiciyan, A. M. & Tscharntke, T. Intercropping enhances beneficial arthropods and controls pests: a systematic review and meta-analysis. Agric. Ecosyst. Environ. 356, 108617 (2023).

    Article 
    CAS 

    Google Scholar 

  • Camarretta, N. et al. Using airborne laser scanning to characterize land-use systems in a tropical landscape based on vegetation structural metrics. Remote Sens. 13, 4794 (2021).

    Article 

    Google Scholar 

  • Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007).

    Article 

    Google Scholar 

  • Corley, R. H. V. & Tinker, P. B. H. The Oil Palm (John Wiley & Sons, 2015).

  • Potapov, A. M. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol. Rev. Camb. Philos. Soc. 97, 1691–1711 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Krashevska, et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 187, 255–266 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hyodo, F. et al. Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C. Funct. Ecol. 22, 516–522 (2008).

    Article 

    Google Scholar 

  • Hannula, S. E. & Morriën, E. Will fungi solve the carbon dilemma? Geoderma 413, 115767 (2022).

    Article 
    CAS 

    Google Scholar 

  • Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. 9, 9027–9039 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evol. 27, 40–46 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hyodo, F., Uchida, T., Kaneko, N. & Tayasu, I. Use of radiocarbon to estimate diet ages of earthworms across different climate regions. Appl. Soil Ecol. 62, 178–183 (2012).

    Article 

    Google Scholar 

  • Garnier, P., Makowski, D., Hedde, M. & Bertrand, M. Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil. Sci. Rep. 12, 13616 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angst, G. et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Change Biol. 28, 4775–4782 (2022).

    Article 

    Google Scholar 

  • Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil food web models. Funct. Ecol. 35, 288–300 (2021).

    Article 
    CAS 

    Google Scholar 

  • Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. Camb. Philos. Soc. 97, 1057–1117 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ashton‐Butt, A. et al. Replanting of first‐cycle oil palm results in a second wave of biodiversity loss. Ecol. Evol. 9, 6433–6443 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, H.-H. et al. Application of oil palm empty fruit bunch effects on soil biota and functions: a case study in Sumatra, Indonesia. Agric. Ecosyst. Environ. 256, 105–113 (2018).

    Article 

    Google Scholar 

  • Darras, K. F. A. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations—ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).

  • Teuscher, M. et al. Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Front. Plant Sci. 7, 1538 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashraf, M. et al. Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agric. Ecosyst. Environ. 260, 19–26 (2018).

    Article 

    Google Scholar 

  • Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).

    Article 

    Google Scholar 

  • Allen, K., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sohlström, E. H. et al. Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. Ecol. Evol. 8, 12737–12749 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darras, K. et al. BioSounds: an open-source, online platform for ecoacoustics. F1000 Res. 9, 1224 (2020).

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar 

  • Azhar, A. et al. Rainforest conversion to cash crops reduces abundance, biomass and species richness of parasitoid wasps in Sumatra, Indonesia. Agric. For. Entomol. 24, 506–515 (2022).

    Article 
    MathSciNet 

    Google Scholar 

  • Nazarreta, R. et al. Rainforest conversion to smallholder plantations of rubber or oil palm leads to species loss and community shifts in canopy ants (Hymenoptera: Formicidae). Myrmecol. News 30, 175–186 (2020).

  • Kasmiatun, et al. Rainforest conversion to smallholder cash crops leads to varying declines of beetles (Coleoptera) on Sumatra. Biotropica 55, 119–131 (2023).

    Article 

    Google Scholar 

  • Mawan, A. et al. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol. Evol. 22, 144 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klarner, B. et al. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia). PLoS ONE 12, e0180915 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Potapov, A. M., Scheu, S. & Tiunov, A. V. Trophic consistency of supraspecific taxa in below-ground invertebrate communities: comparison across lineages and taxonomic ranks. Funct. Ecol. 33, 1172–1183 (2019).

    Article 

    Google Scholar 

  • Petersen, H. Estimation of dry weight, fresh weight and calorific content of various collembolan species. Pedobiologia 15, 222–243 (1975).

  • Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate body sizes from Marion Island. Antarct. Sci. 13, 135–143 (2001).

    Article 

    Google Scholar 

  • Hale, C. M., Reich, P. B. & Frelich, L. E. Allometric equations for estimation of ash-free dry mass from length measurements for selected European earthworm species (Lumbricidae) in the Western Great Lakes region. Am. Midl. Nat. 151, 179–185 (2004).

    Article 

    Google Scholar 

  • Brose, U. et al. Foraging theory predicts predator–prey energy fluxes. J. Anim. Ecol. 77, 1072–1078 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gauzens, B. et al. fluxweb: an R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270–279 (2019).

    Article 

    Google Scholar 

  • Peschel, K., Norton, R., Scheu, S. & Maraun, M. Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol. Biochem. 38, 2985–2989 (2006).

    Article 
    CAS 

    Google Scholar 

  • Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Meijide, A. et al. Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agric. For. Meteorol. 252, 208–219 (2018).

    Article 

    Google Scholar 

  • Jochum, M. et al. For flux’s sake: general considerations for energy-flux calculations in ecological communities. Ecol. Evol. 11, 12948–12969 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

  • Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  • Pinheiro, J. & Bates, D. M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).

  • Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123, 1157–1172 (2014).

    Article 

    Google Scholar 

  • Wolkovich, E. M. Reticulated channels in soil food webs. Soil Biol. Biochem. 102, 18–21 (2016).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *