Strange IndiaStrange India


  • Brondizio, E. S., Settele, J., Diaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  • Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: we know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).

    Article 

    Google Scholar 

  • Rasmont, P. et al. Climatic risk and distribution atlas of European Bumblebees Biorisk 10 (Pensoft Publishers, 2015).

  • Rasmont, P., Ghisbain, G. & Terzo, M. Bumblebees of Europe and Neighbouring Regions (NAP Editions, 2021).

  • Nieto, A. et al. European Red List of Bees (Publication Office of the European Union, 2014).

  • Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chowdhury, S. et al. Protected areas and the future of insect conservation. Trends Ecol. Evol. 38, 85–95 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Article 

    Google Scholar 

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar 

  • Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hemberger, J., Crossley, M. S. & Gratton, C. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence. Ecol. Lett. 24, 1800–1813 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drossart, M. et al. Belgian Red List of Bees (Presse universitaire de l’Université de Mons, 2019).

  • Reemer, M. Basisrapport voor de Rode Lijst Bijen (Ministerie van Landbouw, Natuur en Voedselkwaliteit, 2018).

  • Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Article 

    Google Scholar 

  • Thiery, W. et al. Intergenerational inequities in exposure to climate extremes. Science 374, 158–160 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Williams, P. H. et al. The arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa 4625, 1–68 (2019).

    Article 

    Google Scholar 

  • Martinet, B. et al. Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 35, 1507–1518 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect. Conserv. 21, 357–366 (2017).

    Article 

    Google Scholar 

  • Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1 https://www.iucnredlist.org/documents/RedListGuidelines.pdf (IUCN, 2022).

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).

    Google Scholar 

  • Fijen, T. P. M. Mass-migrating bumblebees: an overlooked phenomenon with potential far-reaching implications for bumblebee conservation. J. Appl. Ecol. 58, 274–280 (2021).

    Article 

    Google Scholar 

  • Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ghisbain, G. Are bumblebees relevant models for understanding wild bee decline? Front. Conserv. Sci. 2, 752213 (2021).

    Article 

    Google Scholar 

  • Marshall, L. et al. Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. Proc. R. Soc. B. 287, 20202201 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides and lack of flowers. Science 347, 1255957 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Gérard, M., Amiri, A., Cariou, B. & Baird, E. Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees. Glob. Change Biol. 28, 4251–4259 (2022).

    Article 

    Google Scholar 

  • Martinet, B. et al. Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct. Ecol. 35, 739–752 (2020).

    Article 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gérard, M. et al. Shift in size of bumblebee queens over the last century. Glob. Change Biol. 26, 1185–1195 (2020).

    Article 

    Google Scholar 

  • Lecocq, T. et al. An integrative taxonomic approach to assess the status of Corsican bumblebees: implications for conservation. Anim. Conserv. 18, 236–248 (2015).

    Article 

    Google Scholar 

  • Lecocq, T. et al. Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool. Scr. 44, 281–297 (2015).

    Article 

    Google Scholar 

  • Brasero, N. et al. Resolving the species status of overlooked West‐Palaearctic bumblebees. Zool. Scr. 50, 616–632 (2021).

    Article 

    Google Scholar 

  • Ghisbain, G. et al. A worthy conservation target? Revising the status of the rarest bumblebee of Europe. Insect Conserv. Divers. 14, 661–674 (2021).

    Article 

    Google Scholar 

  • Williams, P. H. Not just cryptic a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. supports additional species (Apidae, genus Bombus). J. Nat. Hist. 55, 271–282 (2021).

    Article 

    Google Scholar 

  • Williams, P. H. et al. Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). Eur. J. Taxon. 719, 1–120 (2020).

    Google Scholar 

  • Ghisbain, G., Michez, D., Marshall, L., Rasmont, P. & Dellicour, S. Wildlife conservation strategies should incorporate both taxon identity and geographical context—further evidence with bumblebees. Divers. Distrib. 26, 1741–1751 (2020).

    Article 

    Google Scholar 

  • Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, P. H., Cameron, S. A., Hines, H. M., Cederberg, B. & Rasmont, P. A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39, 46–74 (2008).

    Article 

    Google Scholar 

  • Vray, S. et al. A century of local changes in bumblebee communities and landscape composition in Belgium. J. Insect Conserv. 23, 489–501 (2019).

    Article 

    Google Scholar 

  • Christians, C. Quarante ans de politique agricole européenne commune et d’agriculture en Belgique. Bull. Soc. Géograph. Liège 35, 41–55 (1998).

    Google Scholar 

  • Rollin, O. et al. Drastic shifts in the Belgian bumblebee community over the last century. Biodivers. Conserv. 29, 2553–2573 (2020).

    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Klitting, R. et al. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat. Commun. 13, 5596 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).

    Article 

    Google Scholar 

  • Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006).

    Article 

    Google Scholar 

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).

    Article 

    Google Scholar 

  • Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A. Threshold-dependence as a desirable attribute for discrimination assessment: implications for the evaluation of species distribution models. Biodivers. Conserv. 23, 369–385 (2014).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).

    Article 

    Google Scholar 

  • Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dansk.Vidensk. Selsk. Skr. 5, 1–34 (1948).

    Google Scholar 

  • Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).

    Article 

    Google Scholar 

  • Li, W. & Guo, Q. How to assess the prediction accuracy of species presence–absence models without absence data? Ecography 36, 788–799 (2013).

    Article 

    Google Scholar 

  • Lange, S. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dynam. 9, 627–645 (2018).

    Article 

    Google Scholar 

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article 

    Google Scholar 

  • Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

    Article 

    Google Scholar 

  • Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dynam. 40, 2123–2165 (2013).

    Article 

    Google Scholar 

  • Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability and climate sensitivity. J. Clim. 23, 6312–6335 (2010).

    Article 

    Google Scholar 

  • Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *