Brondizio, E. S., Settele, J., Diaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).
Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Google Scholar
Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: we know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
Google Scholar
Rasmont, P. et al. Climatic risk and distribution atlas of European Bumblebees Biorisk 10 (Pensoft Publishers, 2015).
Rasmont, P., Ghisbain, G. & Terzo, M. Bumblebees of Europe and Neighbouring Regions (NAP Editions, 2021).
Nieto, A. et al. European Red List of Bees (Publication Office of the European Union, 2014).
Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).
Google Scholar
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
Google Scholar
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Google Scholar
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).
Google Scholar
Chowdhury, S. et al. Protected areas and the future of insect conservation. Trends Ecol. Evol. 38, 85–95 (2022).
Google Scholar
Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461 (2021).
Google Scholar
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
Google Scholar
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
Google Scholar
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
Google Scholar
Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).
Google Scholar
Hemberger, J., Crossley, M. S. & Gratton, C. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence. Ecol. Lett. 24, 1800–1813 (2021).
Google Scholar
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
Google Scholar
Drossart, M. et al. Belgian Red List of Bees (Presse universitaire de l’Université de Mons, 2019).
Reemer, M. Basisrapport voor de Rode Lijst Bijen (Ministerie van Landbouw, Natuur en Voedselkwaliteit, 2018).
Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).
Google Scholar
Thiery, W. et al. Intergenerational inequities in exposure to climate extremes. Science 374, 158–160 (2021).
Google Scholar
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Google Scholar
Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).
Google Scholar
Williams, P. H. et al. The arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa 4625, 1–68 (2019).
Google Scholar
Martinet, B. et al. Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 35, 1507–1518 (2021).
Google Scholar
Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect. Conserv. 21, 357–366 (2017).
Google Scholar
Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1 https://www.iucnredlist.org/documents/RedListGuidelines.pdf (IUCN, 2022).
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
Fijen, T. P. M. Mass-migrating bumblebees: an overlooked phenomenon with potential far-reaching implications for bumblebee conservation. J. Appl. Ecol. 58, 274–280 (2021).
Google Scholar
Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).
Google Scholar
Ghisbain, G. Are bumblebees relevant models for understanding wild bee decline? Front. Conserv. Sci. 2, 752213 (2021).
Google Scholar
Marshall, L. et al. Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. Proc. R. Soc. B. 287, 20202201 (2020).
Google Scholar
Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides and lack of flowers. Science 347, 1255957 (2015).
Google Scholar
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Google Scholar
Gérard, M., Amiri, A., Cariou, B. & Baird, E. Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees. Glob. Change Biol. 28, 4251–4259 (2022).
Google Scholar
Martinet, B. et al. Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct. Ecol. 35, 739–752 (2020).
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
Gérard, M. et al. Shift in size of bumblebee queens over the last century. Glob. Change Biol. 26, 1185–1195 (2020).
Google Scholar
Lecocq, T. et al. An integrative taxonomic approach to assess the status of Corsican bumblebees: implications for conservation. Anim. Conserv. 18, 236–248 (2015).
Google Scholar
Lecocq, T. et al. Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool. Scr. 44, 281–297 (2015).
Google Scholar
Brasero, N. et al. Resolving the species status of overlooked West‐Palaearctic bumblebees. Zool. Scr. 50, 616–632 (2021).
Google Scholar
Ghisbain, G. et al. A worthy conservation target? Revising the status of the rarest bumblebee of Europe. Insect Conserv. Divers. 14, 661–674 (2021).
Google Scholar
Williams, P. H. Not just cryptic a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. supports additional species (Apidae, genus Bombus). J. Nat. Hist. 55, 271–282 (2021).
Google Scholar
Williams, P. H. et al. Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). Eur. J. Taxon. 719, 1–120 (2020).
Ghisbain, G., Michez, D., Marshall, L., Rasmont, P. & Dellicour, S. Wildlife conservation strategies should incorporate both taxon identity and geographical context—further evidence with bumblebees. Divers. Distrib. 26, 1741–1751 (2020).
Google Scholar
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
Google Scholar
Williams, P. H., Cameron, S. A., Hines, H. M., Cederberg, B. & Rasmont, P. A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39, 46–74 (2008).
Google Scholar
Vray, S. et al. A century of local changes in bumblebee communities and landscape composition in Belgium. J. Insect Conserv. 23, 489–501 (2019).
Google Scholar
Christians, C. Quarante ans de politique agricole européenne commune et d’agriculture en Belgique. Bull. Soc. Géograph. Liège 35, 41–55 (1998).
Rollin, O. et al. Drastic shifts in the Belgian bumblebee community over the last century. Biodivers. Conserv. 29, 2553–2573 (2020).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Klitting, R. et al. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat. Commun. 13, 5596 (2022).
Google Scholar
Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).
Google Scholar
Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006).
Google Scholar
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).
Google Scholar
Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
Google Scholar
Jiménez-Valverde, A. Threshold-dependence as a desirable attribute for discrimination assessment: implications for the evaluation of species distribution models. Biodivers. Conserv. 23, 369–385 (2014).
Google Scholar
Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).
Google Scholar
Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dansk.Vidensk. Selsk. Skr. 5, 1–34 (1948).
Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).
Google Scholar
Li, W. & Guo, Q. How to assess the prediction accuracy of species presence–absence models without absence data? Ecography 36, 788–799 (2013).
Google Scholar
Lange, S. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dynam. 9, 627–645 (2018).
Google Scholar
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Google Scholar
Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).
Google Scholar
Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dynam. 40, 2123–2165 (2013).
Google Scholar
Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
Google Scholar
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).
Google Scholar