Strange IndiaStrange India


  • 1.

    Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann. Neurol. 14, 471–479 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Sandweiss, A. J., Brandt, V. L. & Zoghbi, H. Y. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol. 19, 689–698 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Laurvick, C. L. et al. Rett syndrome in Australia: a review of the epidemiology. J. Pediatr. 148, 347–352 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Neul, J. L. et al. Developmental delay in Rett syndrome: data from the natural history study. J. Neurodev. Disord. 6, 20 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Katz, D. M. et al. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis. Model. Mech. 5, 733–745 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Samaco, R. C. et al. Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum. Mol. Genet. 22, 96–109 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Garg, S. K. et al. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci. 33, 13612–13620 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-associated virus-based gene therapy for CNS diseases. Hum. Gene Ther. 27, 478–496 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Clarke, A. J. & Abdala Sheikh, A. P. A perspective on “cure” for Rett syndrome. Orphanet J. Rare Dis. 13, 44 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Collins, A. L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Braunschweig, D., Simcox, T., Samaco, R. C. & LaSalle, J. M. X-chromosome inactivation ratios affect wild-type MeCP2 expression within mosaic Rett syndrome and Mecp2−/+ mouse brain. Hum. Mol. Genet. 13, 1275–1286 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Hao, S. et al. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature 526, 430–434 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Lu, H. et al. Loss and gain of MeCP2 cause similar hippocampal circuit dysfunction that is rescued by deep brain stimulation in a Rett syndrome mouse model. Neuron 91, 739–747 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Dawson, G. et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 125, e17–e23 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Schaevitz, L. R., Gómez, N. B., Zhen, D. P. & Berger-Sweeney, J. E. MeCP2 R168X male and female mutant mice exhibit Rett-like behavioral deficits. Genes Brain Behav. 12, 732–740 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Deacon, R. M. Measuring motor coordination in mice. J. Vis. Exp. 75, e2609 (2013).

    Google Scholar 

  • 22.

    Kee, S. E., Mou, X., Zoghbi, H. Y. & Ji, D. Impaired spatial memory codes in a mouse model of Rett syndrome. eLife 7, e31451 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protocols 1, 848–858 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Chowdhury, A. & Caroni, P. Time units for learning involving maintenance of system-wide cFos expression in neuronal assemblies. Nat. Commun. 9, 4122 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Gallo, F. T., Katche, C., Morici, J. F., Medina, J. H. & Weisstaub, N. V. Immediate early genes, memory, and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front. Behav. Neurosci. 12, 79 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Attardo, A. et al. Long-term consolidation of ensemble neural plasticity patterns in hippocampal area CA1. Cell Rep. 25, 640–650 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Lau, B. Y. B., Krishnan, K., Huang, Z. J. & Shea, S. D. Maternal experience-dependent cortical plasticity in mice is circuit- and stimulus-specific and requires MECP2. J. Neurosci. 40, 1514–1526 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Hunsaker, M. R. & Kesner, R. P. Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus 18, 955–964 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Guise, K. G. & Shapiro, M. L. Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 94, 183–192 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Kim, J. Y. et al. Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur. J. Neurosci. 37, 1203–1220 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Rietveld, L., Stuss, D. P., McPhee, D. & Delaney, K. R. Genotype-specific effects of Mecp2 loss-of-function on morphology of layer V pyramidal neurons in heterozygous female Rett syndrome model mice. Front. Cell. Neurosci. 9, 145 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Connolly, D. R. & Zhou, Z. Genomic insights into MeCP2 function: a role for the maintenance of chromatin architecture. Curr. Opin. Neurobiol. 59, 174–179 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Linhoff, M. W., Garg, S. K. & Mandel, G. A high-resolution imaging approach to investigate chromatin architecture in complex tissues. Cell 163, 246–255 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Downs, J. et al. Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet J. Rare Dis. 13, 3 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Pignatelli, M. et al. Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Kayton, A. Newborn screening: a literature review. Neonatal Netw. 26, 85–95 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Valente, E. M., Ferraris, A. & Dallapiccola, B. Genetic testing for paediatric neurological disorders. Lancet Neurol. 7, 1113–1126 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Pitt, J. J. Newborn screening. Clin. Biochem. Rev. 31, 57–68 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Landa, R. J. Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders. Int. Rev. Psychiatry 30, 25–39 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Chiurazzi, P., Pirozzi, F. Advances in understanding—genetic basis of intellectual disability. F1000 Res. 5, 599 (2016).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Kroon, T., Sierksma, M. C. & Meredith, R. M. Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective. Front. Syst. Neurosci. 7, 75 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Lu, H. C. et al. Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat. Genet. 49, 527–536 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Dickstein, D. L. et al. Automatic dendritic spine quantification from confocal data with Neurolucida 360. Curr. Protoc. Neurosci. 77, 1.27.1–1.27.21 (2016).

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *