Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).
Google Scholar
McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).
Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).
Google Scholar
McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).
Google Scholar
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Google Scholar
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Google Scholar
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Google Scholar
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Google Scholar
Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).
Google Scholar
Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).
Google Scholar
Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).
Google Scholar
Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 4005 (2018).
Google Scholar
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).
Google Scholar
Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk–boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).
Google Scholar
Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).
Google Scholar
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).
Google Scholar
Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).
Google Scholar
Ghatak, A., Brandenbourger, M., Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).
Google Scholar
Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).
Google Scholar
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).
Google Scholar
Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Google Scholar
Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).
Google Scholar
Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).
Google Scholar
Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).
Google Scholar
Chen, C.-W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019).
Google Scholar
Qian, K. et al. Observation of Majorana-like bound states in metamaterial-based Kitaev chain analogs. Phys. Rev. Res. 5, 012012 (2023).
Google Scholar
Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).
Google Scholar
Yokomizo, K. & Murakami, S. Non-Bloch band theory in bosonic Bogoliubov–de Dennes systems. Phys. Rev. B 103, 165123 (2021).
Google Scholar
Flynn, V. P., Cobanera, E. & Viola, L. Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics. Phys. Rev. Lett. 127, 245701 (2021).
Google Scholar
Mathew, J. P., Pino, J. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2018).
Google Scholar
Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically-induced squeezing. Nature 606, 82–87 (2021).
Google Scholar
Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).
Google Scholar
Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).
Hatano, N. & Nelson, D. R. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56, 8651–8673 (1997).
Google Scholar
Xiong, Y. Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun. 2, 035043 (2018).
Google Scholar
Coulais, C., Fleury, R. & Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2021).
Google Scholar
Brunelli, M., Wanjura, C. C. & Nunnenkamp, A. Restoration of the non-Hermitian bulk–boundary correspondence via topological amplification. SciPost Phys. 15, 173 (2022).
Porras, D. & Fernández-Lorenzo, S. Topological amplification in photonic lattices. Phys. Rev. Lett. 122, 143901 (2019).
Google Scholar
Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett. 127, 213601 (2021).
Google Scholar
Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and skin effect. Phys. Rev. Lett. 130, 203605 (2023).
Google Scholar
Yuan, H. et al. Non-Hermitian topolectrical circuit sensor with high sensitivity. Adv. Sci. 10, 2301128 (2023).
Google Scholar
Parto, M., Leefmans, C., Williams, J. & Marandi, A. Enhanced sensitivity via non-Hermitian topology. Preprint at arxiv.org/abs/2305.03282 (2023).
Könye, V. et al. Non-Hermitian topological ohmmeter. Preprint at arxiv.org/abs/2308.11367 (2023).
Bardyn, C. E. & Imamoglu, A. Majorana-like modes of light in a one-dimensional array of nonlinear cavities. Phys. Rev. Lett. 109, 253606 (2012).
Google Scholar
Barlas, Y. & Prodan, E. Topological braiding of non-Abelian midgap defects in classical metamaterials. Phys. Rev. Lett. 124, 146801 (2020).
Google Scholar
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).
Google Scholar
Lee, G., Jin, T., Wang, Y.-X., McDonald, A. & Clerk, A. Entanglement phase transition due to reciprocity breaking without measurement or post-selection. PRX Quantum 5, 010313 (2023).
Busnaina, J. H. et al. Quantum simulation of the bosonic Kitaev chain. Preprint at https://arxiv.org/abs/2309.06178 (2023).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Google Scholar
Weaver, M. J. et al. Coherent optomechanical state transfer between disparate mechanical resonators. Nat. Commun. 8, 824 (2017).
Google Scholar
Shkarin, A. B. et al. Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014).
Google Scholar
Meystre, P. & Sargent, M. Elements of Quantum Optics 4th edn (Springer, 2007).