Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).
Google Scholar
Yuzbashyan, E. A., Tsyplyatyev, O. & Altshuler, B. L. Relaxation and persistent oscillations of the order parameter in fermionic condensates. Phys. Rev. Lett. 96, 097005 (2006).
Google Scholar
Barankov, R. A. & Levitov, L. S. Synchronization in the BCS pairing dynamics as a critical phenomenon. Phys. Rev. Lett. 96, 230403 (2006).
Google Scholar
Yuzbashyan, E. A. & Dzero, M. Dynamical vanishing of the order parameter in a fermionic condensate. Phys. Rev. Lett. 96, 230404 (2006).
Google Scholar
Gurarie, V. & Radzihovsky, L. Resonantly paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007).
Google Scholar
Gurarie, V. Nonequilibrium dynamics of weakly and strongly paired superconductors. Phys. Rev. Lett. 103, 075301 (2009).
Google Scholar
Foster, M. S., Dzero, M., Gurarie, V. & Yuzbashyan, E. A. Quantum quench in a p + ip superfluid: winding numbers and topological states far from equilibrium. Phys. Rev. B 88, 104511 (2013).
Yuzbashyan, E. A., Dzero, M., Gurarie, V. & Foster, M. S. Quantum quench phase diagrams of an s-wave BCS-BEC condensate. Phys. Rev. A 91, 033628 (2015).
Lewis-Swan, R. J. et al. Cavity-QED quantum simulator of dynamical phases of a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 126, 173601 (2021).
Google Scholar
Kelly, S. P., Thompson, J. K., Rey, A. M. & Marino, J. Resonant light enhances phase coherence in a cavity QED simulator of fermionic superfluidity. Phys. Rev. Res. 4, L042032 (2022).
Google Scholar
Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).
Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).
Google Scholar
Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).
Google Scholar
Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 89, 035001 (2017).
Google Scholar
Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 88, 015002 (2016).
Marino, J., Eckstein, M., Foster, M. & Rey, A.-M. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. Rep. Prog. Phys. 85, 116001 (2022).
Google Scholar
Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. J. Exp. Theor. Phys. 38, 1018 (1974). [Russian original—Zh. Eksp. Teor. Fiz. 65, 2038 (1973)].
Yuzbashyan, E. A., Altshuler, B. L., Kuznetsov, V. B. & Enolskii, V. Z. Solution for the dynamics of the BCS and central spin problems. J. Phys.: Math. Gen. 38, 7831 (2005).
Barankov, R. A., Levitov, L. S. & Spivak, B. Z. Collective Rabi oscillations and solitons in a time-dependent BCS pairing problem. Phys. Rev. Lett. 93, 160401 (2004).
Google Scholar
Yuzbashyan, E. A. Normal and anomalous solitons in the theory of dynamical Cooper pairing. Phys. Rev. B 78, 184507 (2008).
Foster, M. S., Gurarie, V., Dzero, M. & Yuzbashyan, E. A. Quench-induced Floquet topological p-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014).
Google Scholar
Collado, H. P. O., Defenu, N. & Lorenzana, J. Engineering Higgs dynamics by spectral singularities. Phys. Rev. Res. 5, 023011 (2023).
Google Scholar
Mansart, B. et al. Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl Acad. Sci. USA 110, 4539–4544 (2013).
Google Scholar
Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).
Google Scholar
Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).
Google Scholar
Randeria, M. & Taylor, E. BCS-BEC crossover and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).
Google Scholar
Behrle, A. et al. Higgs mode in a strongly interacting fermionic superfluid. Nat. Phys. 14, 781–785 (2018).
Google Scholar
Anderson, P. W. Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900 (1958).
Google Scholar
Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. Lett. 125, 060402 (2020).
Google Scholar
Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).
Google Scholar
Allred, J. C., Lyman, R. N., Kornack, T. W. & Romalis, M. V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002).
Google Scholar
Kleine, A., Kollath, C., McCulloch, I. P., Giamarchi, T. & Schollwoeck, U. Excitations in two-component Bose gases. New J. Phys. 10, 045025 (2008).
Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010).
Google Scholar
Smale, S. et al. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas. Sci. Adv. 5, eaax1568 (2019).
Google Scholar
Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).
Google Scholar
Baghdad, M. et al. Spectral engineering of cavity-protected polaritons in an atomic ensemble. Nat. Phys. 19, 1104–1109 (2023).
Google Scholar
Sauerwein, N. et al. Engineering random spin models with atoms in a high-finesse cavity. Nat. Phys. 19, 1128–1134 (2023).
Google Scholar
Richardson, R. & Sherman, N. Exact eigenstates of the pairing-force Hamiltonian. Nucl. Phys. 52, 221–238 (1964).
Google Scholar
Gaudin, M. Diagonalization of a class of spin Hamiltonians. J. Phys. 37, 1087–1098 (1976).
Weiner, J. M., Cox, K. C., Bohnet, J. G., Chen, Z. & Thompson, J. K. Superradiant Raman laser magnetometer. Appl. Phys. Lett. 101, 261107 (2012).
Bohnet, J. G., Chen, Z., Weiner, J. M., Cox, K. C. & Thompson, J. K. Active and passive sensing of collective atomic coherence in a superradiant laser. Phys. Rev. A 88, 013826 (2013).
Norcia, M. A., Winchester, M. N., Cline, J. R. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).
Google Scholar
Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).
Black-Schaffer, A. M. Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene. Phys. Rev. Lett. 109, 197001 (2012).
Google Scholar
Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).
Google Scholar
Kiesel, M. L., Platt, C., Hanke, W., Abanin, D. A. & Thomale, R. Competing many-body instabilities and unconventional superconductivity in graphene. Phys. Rev. B 86, 020507 (2012).
Kiesel, M. L., Platt, C., Hanke, W. & Thomale, R. Model evidence of an anisotropic chiral d + id-wave pairing state for the water-intercalated NaxCoO2 ⋅ yH2O superconductor. Phys. Rev. Lett. 111, 097001 (2013).
Google Scholar
Fischer, M. H. et al. Chiral d-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509 (2014).
Shankar, A. et al. Simulating dynamical phases of chiral p + ip superconductors with a trapped ion magnet. PRX Quantum 3, 040324 (2022).
Laughlin, R. Magnetic induction of \({d}_{{x}^{2}-{y}^{2}}+i{d}_{xy}\) order in high-Tc superconductors. Phys. Rev. Lett. 80, 5188 (1998).
Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373 (2006).
Google Scholar
Schäfer, T. & Teaney, D. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rep. Prog. Phys. 72, 126001 (2009).
Pehlivan, Y., Balantekin, A., Kajino, T. & Yoshida, T. Invariants of collective neutrino oscillations. Phys. Rev. D 84, 065008 (2011).
Norcia, M. A. et al. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X 8, 021036 (2018).
Google Scholar
Young, D. J. et al. Data for: observing dynamical phases of BCS superconductors in a cavity QED simulator. Dryad https://doi.org/10.5061/dryad.7h44j100j (2023).