Strange IndiaStrange India


  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    MathSciNet 
    CAS 

    Google Scholar 

  • Yuzbashyan, E. A., Tsyplyatyev, O. & Altshuler, B. L. Relaxation and persistent oscillations of the order parameter in fermionic condensates. Phys. Rev. Lett. 96, 097005 (2006).

    PubMed 

    Google Scholar 

  • Barankov, R. A. & Levitov, L. S. Synchronization in the BCS pairing dynamics as a critical phenomenon. Phys. Rev. Lett. 96, 230403 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Yuzbashyan, E. A. & Dzero, M. Dynamical vanishing of the order parameter in a fermionic condensate. Phys. Rev. Lett. 96, 230404 (2006).

    PubMed 

    Google Scholar 

  • Gurarie, V. & Radzihovsky, L. Resonantly paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007).

    MathSciNet 
    CAS 

    Google Scholar 

  • Gurarie, V. Nonequilibrium dynamics of weakly and strongly paired superconductors. Phys. Rev. Lett. 103, 075301 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Foster, M. S., Dzero, M., Gurarie, V. & Yuzbashyan, E. A. Quantum quench in a p + ip superfluid: winding numbers and topological states far from equilibrium. Phys. Rev. B 88, 104511 (2013).

    Google Scholar 

  • Yuzbashyan, E. A., Dzero, M., Gurarie, V. & Foster, M. S. Quantum quench phase diagrams of an s-wave BCS-BEC condensate. Phys. Rev. A 91, 033628 (2015).

    Google Scholar 

  • Lewis-Swan, R. J. et al. Cavity-QED quantum simulator of dynamical phases of a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 126, 173601 (2021).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Kelly, S. P., Thompson, J. K., Rey, A. M. & Marino, J. Resonant light enhances phase coherence in a cavity QED simulator of fermionic superfluidity. Phys. Rev. Res. 4, L042032 (2022).

    CAS 

    Google Scholar 

  • Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).

    Google Scholar 

  • Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    CAS 

    Google Scholar 

  • Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 89, 035001 (2017).

    MathSciNet 

    Google Scholar 

  • Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 88, 015002 (2016).

    Google Scholar 

  • Marino, J., Eckstein, M., Foster, M. & Rey, A.-M. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. Rep. Prog. Phys. 85, 116001 (2022).

    MathSciNet 

    Google Scholar 

  • Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. J. Exp. Theor. Phys. 38, 1018 (1974). [Russian original—Zh. Eksp. Teor. Fiz. 65, 2038 (1973)].

    Google Scholar 

  • Yuzbashyan, E. A., Altshuler, B. L., Kuznetsov, V. B. & Enolskii, V. Z. Solution for the dynamics of the BCS and central spin problems. J. Phys.: Math. Gen. 38, 7831 (2005).

  • Barankov, R. A., Levitov, L. S. & Spivak, B. Z. Collective Rabi oscillations and solitons in a time-dependent BCS pairing problem. Phys. Rev. Lett. 93, 160401 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Yuzbashyan, E. A. Normal and anomalous solitons in the theory of dynamical Cooper pairing. Phys. Rev. B 78, 184507 (2008).

    Google Scholar 

  • Foster, M. S., Gurarie, V., Dzero, M. & Yuzbashyan, E. A. Quench-induced Floquet topological p-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Collado, H. P. O., Defenu, N. & Lorenzana, J. Engineering Higgs dynamics by spectral singularities. Phys. Rev. Res. 5, 023011 (2023).

    CAS 

    Google Scholar 

  • Mansart, B. et al. Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl Acad. Sci. USA 110, 4539–4544 (2013).

    CAS 
    PubMed Central 

    Google Scholar 

  • Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    PubMed 

    Google Scholar 

  • Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Randeria, M. & Taylor, E. BCS-BEC crossover and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    CAS 

    Google Scholar 

  • Behrle, A. et al. Higgs mode in a strongly interacting fermionic superfluid. Nat. Phys. 14, 781–785 (2018).

    CAS 

    Google Scholar 

  • Anderson, P. W. Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900 (1958).

    MathSciNet 
    CAS 

    Google Scholar 

  • Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. Lett. 125, 060402 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Allred, J. C., Lyman, R. N., Kornack, T. W. & Romalis, M. V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kleine, A., Kollath, C., McCulloch, I. P., Giamarchi, T. & Schollwoeck, U. Excitations in two-component Bose gases. New J. Phys. 10, 045025 (2008).

    Google Scholar 

  • Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Smale, S. et al. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas. Sci. Adv. 5, eaax1568 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Baghdad, M. et al. Spectral engineering of cavity-protected polaritons in an atomic ensemble. Nat. Phys. 19, 1104–1109 (2023).

    CAS 

    Google Scholar 

  • Sauerwein, N. et al. Engineering random spin models with atoms in a high-finesse cavity. Nat. Phys. 19, 1128–1134 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richardson, R. & Sherman, N. Exact eigenstates of the pairing-force Hamiltonian. Nucl. Phys. 52, 221–238 (1964).

    MathSciNet 

    Google Scholar 

  • Gaudin, M. Diagonalization of a class of spin Hamiltonians. J. Phys. 37, 1087–1098 (1976).

    Google Scholar 

  • Weiner, J. M., Cox, K. C., Bohnet, J. G., Chen, Z. & Thompson, J. K. Superradiant Raman laser magnetometer. Appl. Phys. Lett. 101, 261107 (2012).

    Google Scholar 

  • Bohnet, J. G., Chen, Z., Weiner, J. M., Cox, K. C. & Thompson, J. K. Active and passive sensing of collective atomic coherence in a superradiant laser. Phys. Rev. A 88, 013826 (2013).

    Google Scholar 

  • Norcia, M. A., Winchester, M. N., Cline, J. R. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    Google Scholar 

  • Black-Schaffer, A. M. Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene. Phys. Rev. Lett. 109, 197001 (2012).

    PubMed 

    Google Scholar 

  • Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

    CAS 

    Google Scholar 

  • Kiesel, M. L., Platt, C., Hanke, W., Abanin, D. A. & Thomale, R. Competing many-body instabilities and unconventional superconductivity in graphene. Phys. Rev. B 86, 020507 (2012).

    Google Scholar 

  • Kiesel, M. L., Platt, C., Hanke, W. & Thomale, R. Model evidence of an anisotropic chiral d + id-wave pairing state for the water-intercalated NaxCoO2yH2O superconductor. Phys. Rev. Lett. 111, 097001 (2013).

    PubMed 

    Google Scholar 

  • Fischer, M. H. et al. Chiral d-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509 (2014).

    Google Scholar 

  • Shankar, A. et al. Simulating dynamical phases of chiral p + ip superconductors with a trapped ion magnet. PRX Quantum 3, 040324 (2022).

    Google Scholar 

  • Laughlin, R. Magnetic induction of \({d}_{{x}^{2}-{y}^{2}}+i{d}_{xy}\) order in high-Tc superconductors. Phys. Rev. Lett. 80, 5188 (1998).

  • Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373 (2006).

    CAS 

    Google Scholar 

  • Schäfer, T. & Teaney, D. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rep. Prog. Phys. 72, 126001 (2009).

    Google Scholar 

  • Pehlivan, Y., Balantekin, A., Kajino, T. & Yoshida, T. Invariants of collective neutrino oscillations. Phys. Rev. D 84, 065008 (2011).

    Google Scholar 

  • Norcia, M. A. et al. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X 8, 021036 (2018).

    CAS 

    Google Scholar 

  • Young, D. J. et al. Data for: observing dynamical phases of BCS superconductors in a cavity QED simulator. Dryad https://doi.org/10.5061/dryad.7h44j100j (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *