Strange IndiaStrange India


  • Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  • Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article 

    Google Scholar 

  • Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin-orbit coupling. Phys. Rev. X 12, 021016 (2022).

    CAS 

    Google Scholar 

  • Pekar, S. I. & Rashba, É. I. Combined resonance in crystals in inhomogeneous magnetic fields. Zh. Eksperim. Teor. Fiz. 47, 1927–1930 (1964).

    CAS 

    Google Scholar 

  • Yuan, L. D., Wang, Z., Luo, J. W., Rashba, É. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).

    Article 
    ADS 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  • Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 118, e2108924118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrovykh, D. Y. et al. Spin-dependent band structure, Fermi surface, and carrier lifetime of permalloy. Appl. Phys. Lett. 73, 3459–3461 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rashba, É. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin-orbit interaction included. Fiz. Tverd. Tela: Collected Papers 2, 62–76 (1959).

    Google Scholar 

  • Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, S., Manchon, A. & Železný, J. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. Phys. Rev. Lett. 128, 097702 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).

  • Shao, D. F., Zhang, S. H., Li, M., Eom, C. B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Ren, J. et al. Enumeration and representation of spin space groups. Preprint at https://arxiv.org/abs/2307.10369 (2023).

  • Chen, X., Ren, J., Li, J., Liu, Y. & Liu, Q. Spin space group theory and unconventional magnons in collinear magnets. Preprint at https://arxiv.org/abs/2307.12366 (2023).

  • Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z. D. Spin space groups: full classification and applications. Preprint at https://arxiv.org/abs/2307.10364 (2023).

  • Jiang, Y. et al. Enumeration of spin-space groups: towards a complete description of symmetries of magnetic orders. Preprint at https://arxiv.org/abs/2307.10371 (2023).

  • Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. A 294, 343–358 (1966).

    ADS 
    CAS 

    Google Scholar 

  • Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Litvin, D. B. Spin point groups. Acta Cryst. A 33, 279–287 (1977).

    Article 

    Google Scholar 

  • Yang, J., Liu, Z.-X. & Fang, C. Symmetry invariants and classes of quasi-particles in magnetically ordered systems having weak spin-orbit coupling. Preprint at https://arxiv.org/abs/2105.12738 (2021).

  • Liu, P., Zhang, A., Han, J. & Liu, Q. Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic semimetals. Innovation 3, 100343 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, A. et al. Chiral Dirac fermion in a collinear antiferromagnet. Chin. Phys. Lett. 40, 126101 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ma, H. Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ghimire, N. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishizaka, I. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  • Ji, F. et al. Multichannel exchange-scattering spin polarimetry. Phys. Rev. Lett. 116, 177601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zha, H. et al. Improvement of image-type very-low-energy-electron-diffraction spin polarimeter. Rev. Sci. Instrum. 94, 073704 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schrunk, B. et al. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet. Nature 603, 610–615 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y., Li, J., Liu, P. & Liu, Q. Universal theory of spin-momentum-orbital-site locking. Preprint at https://arxiv.org/abs/2306.16312 (2023).

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018).

    Article 
    ADS 

    Google Scholar 

  • Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, H. C. et al. Direct observation of the bandwidth control Mott transition in the NiS2−xSex multiband system. Phys. Rev. Lett. 112, 087603 (2014).

    Article 
    ADS 

    Google Scholar 

  • Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Halperin, B. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys. 26, 1913–1919 (1987).

    Article 
    CAS 

    Google Scholar 

  • Hastings, J. M., Elliott, N. & Corliss, L. M. Antiferromagnetic structures of MnS2, MnSe2, and MnTe2. Phys. Rev. 115, 13–17 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Burlet, P. et al. Noncollinear magnetic structure of MnTe2. Phys. Rev. B 56, 14013 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, Y. C. et al. High-resolution ARPES endstation for in situ electronic structure investigations at SSRF. Nucl. Sci. Tech. 32, 31 (2021).

    Article 

    Google Scholar 

  • Mitsuhashi, T. et al. Influence of k broadening on ARPES spectra of the (110) and (001) surfaces of SrVO3 films. Phys. Rev. B 94, 125148 (2016).

  • Liu, W. J. et al. Multiple surface resonance electronic spin states in the strong topological metal Zr2Te2P. Phys. Rev. B 106, 245144 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Seibel, C. et al. Photoelectron spin polarization in the Bi2Te3(0001) topological insulator: initial- and final-state effects in the photoemission process. Phys. Rev. B 93, 245150 (2016).

    Article 
    ADS 

    Google Scholar 

  • Bentmann, H. et al. Strong linear dichroism in spin-polarized photoemission from spin-orbit-coupled surface states. Phys. Rev. Lett. 119, 106401 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hedrich, N. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574–577 (2021).

    Article 
    CAS 

    Google Scholar 

  • Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mat. 3, 17088 (2018).

    Article 
    CAS 

    Google Scholar 

  • Levine, E. V. et al. Principles and techniques of the quantum diamond microscope. Nanophotonics 8, 1945–1973 (2019).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Monkhorst, H. J. & Park, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *