Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
Google Scholar
Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
Google Scholar
Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin-orbit coupling. Phys. Rev. X 12, 021016 (2022).
Google Scholar
Pekar, S. I. & Rashba, É. I. Combined resonance in crystals in inhomogeneous magnetic fields. Zh. Eksperim. Teor. Fiz. 47, 1927–1930 (1964).
Google Scholar
Yuan, L. D., Wang, Z., Luo, J. W., Rashba, É. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Google Scholar
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Google Scholar
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).
Google Scholar
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 118, e2108924118 (2021).
Google Scholar
Petrovykh, D. Y. et al. Spin-dependent band structure, Fermi surface, and carrier lifetime of permalloy. Appl. Phys. Lett. 73, 3459–3461 (1998).
Google Scholar
Rashba, É. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin-orbit interaction included. Fiz. Tverd. Tela: Collected Papers 2, 62–76 (1959).
Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).
Google Scholar
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).
Google Scholar
Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).
Google Scholar
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Google Scholar
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).
Google Scholar
Ghosh, S., Manchon, A. & Železný, J. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. Phys. Rev. Lett. 128, 097702 (2022).
Google Scholar
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).
Shao, D. F., Zhang, S. H., Li, M., Eom, C. B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).
Google Scholar
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).
Google Scholar
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Google Scholar
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Google Scholar
Ren, J. et al. Enumeration and representation of spin space groups. Preprint at https://arxiv.org/abs/2307.10369 (2023).
Chen, X., Ren, J., Li, J., Liu, Y. & Liu, Q. Spin space group theory and unconventional magnons in collinear magnets. Preprint at https://arxiv.org/abs/2307.12366 (2023).
Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z. D. Spin space groups: full classification and applications. Preprint at https://arxiv.org/abs/2307.10364 (2023).
Jiang, Y. et al. Enumeration of spin-space groups: towards a complete description of symmetries of magnetic orders. Preprint at https://arxiv.org/abs/2307.10371 (2023).
Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. A 294, 343–358 (1966).
Google Scholar
Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974).
Google Scholar
Litvin, D. B. Spin point groups. Acta Cryst. A 33, 279–287 (1977).
Google Scholar
Yang, J., Liu, Z.-X. & Fang, C. Symmetry invariants and classes of quasi-particles in magnetically ordered systems having weak spin-orbit coupling. Preprint at https://arxiv.org/abs/2105.12738 (2021).
Liu, P., Zhang, A., Han, J. & Liu, Q. Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic semimetals. Innovation 3, 100343 (2022).
Google Scholar
Zhang, A. et al. Chiral Dirac fermion in a collinear antiferromagnet. Chin. Phys. Lett. 40, 126101 (2023).
Google Scholar
Ma, H. Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).
Google Scholar
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Google Scholar
Ghimire, N. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).
Google Scholar
Ishizaka, I. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).
Google Scholar
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Ji, F. et al. Multichannel exchange-scattering spin polarimetry. Phys. Rev. Lett. 116, 177601 (2016).
Google Scholar
Zha, H. et al. Improvement of image-type very-low-energy-electron-diffraction spin polarimeter. Rev. Sci. Instrum. 94, 073704 (2023).
Google Scholar
Schrunk, B. et al. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet. Nature 603, 610–615 (2022).
Google Scholar
Liu, Y., Li, J., Liu, P. & Liu, Q. Universal theory of spin-momentum-orbital-site locking. Preprint at https://arxiv.org/abs/2306.16312 (2023).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Google Scholar
Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018).
Google Scholar
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).
Google Scholar
Xu, H. C. et al. Direct observation of the bandwidth control Mott transition in the NiS2−xSex multiband system. Phys. Rev. Lett. 112, 087603 (2014).
Google Scholar
Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Google Scholar
Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).
Google Scholar
Halperin, B. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys. 26, 1913–1919 (1987).
Google Scholar
Hastings, J. M., Elliott, N. & Corliss, L. M. Antiferromagnetic structures of MnS2, MnSe2, and MnTe2. Phys. Rev. 115, 13–17 (1959).
Google Scholar
Burlet, P. et al. Noncollinear magnetic structure of MnTe2. Phys. Rev. B 56, 14013 (1997).
Google Scholar
Yang, Y. C. et al. High-resolution ARPES endstation for in situ electronic structure investigations at SSRF. Nucl. Sci. Tech. 32, 31 (2021).
Google Scholar
Mitsuhashi, T. et al. Influence of k broadening on ARPES spectra of the (110) and (001) surfaces of SrVO3 films. Phys. Rev. B 94, 125148 (2016).
Liu, W. J. et al. Multiple surface resonance electronic spin states in the strong topological metal Zr2Te2P. Phys. Rev. B 106, 245144 (2022).
Google Scholar
Seibel, C. et al. Photoelectron spin polarization in the Bi2Te3(0001) topological insulator: initial- and final-state effects in the photoemission process. Phys. Rev. B 93, 245150 (2016).
Google Scholar
Bentmann, H. et al. Strong linear dichroism in spin-polarized photoemission from spin-orbit-coupled surface states. Phys. Rev. Lett. 119, 106401 (2017).
Google Scholar
Hedrich, N. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574–577 (2021).
Google Scholar
Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mat. 3, 17088 (2018).
Google Scholar
Levine, E. V. et al. Principles and techniques of the quantum diamond microscope. Nanophotonics 8, 1945–1973 (2019).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Google Scholar
Monkhorst, H. J. & Park, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
Google Scholar
Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).
Google Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).
Google Scholar
Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).
Google Scholar
Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).
Google Scholar
Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
Google Scholar
Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Google Scholar
Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).
Google Scholar