Friedl, P. & Weigelin, B. Interstitial leukocyte migration and immune function. Nat. Immunol. 9, 960–969 (2008).
Google Scholar
Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).
Google Scholar
Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).
Google Scholar
Georgopoulos, K. In search of the mechanism that shapes the neutrophil’s nucleus. Genes Dev. 31, 85–87 (2017).
Google Scholar
Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).
Google Scholar
Cavaillon, J. The historical milestones in the understanding of leucocyte biology initiated by Elie Metchnikoff. J. Leuc. Biol. 90, 413–424 (2011).
Google Scholar
Metchnikoff, E. Über eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagozyten gegen Krankheitserreger. Arch. Pathol. Anat. Physiol. Klin. Med. 96, 177–195 (1884).
Google Scholar
Schultze, M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch. Mikrosc. Anat. 1, 1–42 (1865).
Google Scholar
Hoffmann, K. et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huët anomaly). Nat. Genet. 31, 410–414 (2002).
Google Scholar
Shultz, L. D. et al. Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene model for human Pelger–Huët anomaly. Hum. Mol. Gen. 12, 61–69 (2003).
Google Scholar
Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).
Google Scholar
Hoencamp, C. et al. 3D genomics across the tree of life reveals condensing II as a determinant of architecture type. Science 372, 984–989 (2021).
Google Scholar
Keenan, C. R. et al. Chromosomes distribute randomly to, but not within, human nuclear lobes. iScience 24, 102161 (2021).
Google Scholar
Waugh, B. et al. Three-dimensional deconvolution processing for STEM cryotomography. Proc. Natl Acad. Sci. USA 117, 27374–27380 (2020).
Google Scholar
Sedat, J. W. et al. A proposed unified interphase nucleus chromosome structure: preliminary preponderance of evidence. Proc. Natl Acad. Sci. USA 119, e2119107119 (2022).
Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Google Scholar
Dixon, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
Google Scholar
Hafner, A. et al. Loop stacking organizes genome folding from TADs to chromosomes. Mol. Cell 83, 1377–1392 (2021).
Google Scholar
Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).
Google Scholar
Schwartzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
Google Scholar
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
Google Scholar
Haarhuis, J. H. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).
Google Scholar
Sykes, D. B. & Kamps, M. P. Estrogen-dependent E2A/Pbx1 myeloid cell lines exhibit conditional differentiation that can be arrested by other leukemic oncoproteins. Blood 98, 2308–2318 (2001).
Google Scholar
Zhu, Y. et al. Comprehensive characterization of neutrophil genome topology. Genes Dev. 31, 141–153 (2017).
Google Scholar
Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).
Google Scholar
Zhu, Y., Denholtz, M., Lu, H. & Murre, C. Calcium signaling instructs NIPBL recruitment at active enhancers and promoters via distinct mechanisms to reconstruct genome compartmentalization. Genes Dev. 35, 65–81 (2021).
Google Scholar
Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).
Google Scholar
Khoyratty, T. E. et al. Distinct transcription factor networks control neutrophil-driven inflammation. Nat. Immunol. 22, 1093–1106 (2021).
Google Scholar
Hu, Y. et al. Super-enhancer reprogramming drives a B cell-epithelial transition and high-risk leukemia. Genes Dev. 30, 1971–1990 (2016).
Google Scholar
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophages and B cell identities. Mol. Cell 38, 576–589 (2010).
Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).
Google Scholar
Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).
Google Scholar
Li, M. T. et al. Negative regulation of RIG-I mediated innate antiviral signaling by SEC14L1. J. Virol. 87, 10037-46 (2013).
Google Scholar
Braunholz, D. et al. Isolated NIPBL-missense mutations that cause Cornelia de Lange syndrome alter MAU2 interaction. Eur. J. Hum. Genet. 20, 271–276 (2012).
Google Scholar
Chao, W. C. H. et al. Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader. Cell Rep. 12, 719–725 (2015).
Google Scholar
Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).
Google Scholar
Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).
Google Scholar
Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).
Google Scholar
Rao, S. S. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).
Google Scholar
Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).
Google Scholar
Cuartero, S. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 9, 932–941 (2018).
Google Scholar
Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanisms and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).
Google Scholar
Mohana, G. et al. Chromosome-level organization of the regulatory genome in the Drosophila nervous system. Cell 186, 3826–3844 (2023).
Google Scholar
Bashkirova, E. & Lomvardas, S. Olfactory receptor genes make the case for inter-chromosomal interactions. Curr. Opin. Genet. Dev. 55, 106–113 (2019).
Google Scholar
Hu, Y. et al. Lineage specific 3D genome organization is assembled at multiple scales by Ikaros. Cell 186, 5260–5289 (2023).
Google Scholar
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
Robinson, M. D. et al. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139–40 (2010).
Google Scholar
Raudvere, U. et al. gProfiler: a web server for functional enrichment analysis and conversion of gene lists. Nucleic Acids Res. 47, W191–W198 (2019).
Google Scholar
Yu, G., Wang, L. & He, Q. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
Google Scholar
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
Google Scholar
Zhang, et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).
Google Scholar
Yang, et al.HiCRep: assessing the reproducibility of HiC data using a stratum-adjusted correlation coefficient. Genome Res. 11, 1939–1949 (2017).
Google Scholar
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web served 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
Google Scholar
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
Google Scholar
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).
Google Scholar
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).
Google Scholar
Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).
Google Scholar