Strange IndiaStrange India


  • Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photon. 15, 919 (2021).

    ADS 

    Google Scholar 

  • Hillbrand, J., Andrews, A. M., Detz, H., Strasser, G. & Schwarz, B. Coherent injection locking of quantum cascade laser frequency combs. Nat. Photon. 13, 101 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).

  • Opačak, N. & Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.123.243902 (2019).

  • Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145 (2013).

    ADS 

    Google Scholar 

  • Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94 (2016).

    Google Scholar 

  • Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Meng, B. et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica 7, 162 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Aranson, I. S. & Kramer, L. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002).

    ADS 
    MathSciNet 

    Google Scholar 

  • Bekki, N. & Nozaki, K. Formations of spatial patterns and holes in the generalized Ginzburg–Landau equation. Phys. Lett. A 110, 133 (1985).

    ADS 

    Google Scholar 

  • Lega, J. Traveling hole solutions of the complex Ginzburg–Landau equation: a review. Physica D 152–153, 269 (2001).

    ADS 
    MathSciNet 

    Google Scholar 

  • Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071 (2019).

    CAS 

    Google Scholar 

  • Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

  • Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Englebert, N., Arabí, C. M., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S .et al. Dark-bright soliton bound states in a microresonator. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.128.033901 (2022).

  • Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274 (2017).

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yao, Y., Hoffman, A. J. & Gmachl, C. F. Mid-infrared quantum cascade lasers. Nat. Photon. 6, 432 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Williams, B. S. Terahertz quantum-cascade lasers. Nat. Photon. 1, 517 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.127.093902 (2021).

  • Friedli, P. et al. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett. 102, 222104 (2013).

    ADS 

    Google Scholar 

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Jaidl, M. et al. Comb operation in terahertz quantum cascade ring lasers. Optica 8, 780 (2021).

    ADS 

    Google Scholar 

  • Paolo Micheletti et al. Terahertz optical solitons from dispersion-compensated antenna-coupled planarized ring quantum cascade lasers. Sci. Adv. 9, eadf9426 (2023).

  • Meng, B. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142 (2021).

    ADS 

    Google Scholar 

  • Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.126.173903 (2021).

  • Prati, F. et al. Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics 10, 195 (2020).

    Google Scholar 

  • Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259 (1982).

    ADS 

    Google Scholar 

  • Opačak, N. et al. Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb. Optica 8, 1227 (2021).

    ADS 

    Google Scholar 

  • Efremidis, N., Hizanidis, K., Nistazakis, H. E., Frantzeskakis, D. J. & Malomed, B. A. Stabilization of dark solitons in the cubic Ginzburg–Landau equation. Phys. Rev. E 62, 7410 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Perraud, J.-J. et al. One-dimensional “spirals”: novel asynchronous chemical wave sources. Phys. Rev. Lett. 71, 1272 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burguete, J., Chaté, H., Daviaud, F. & Mukolobwiez, N. Bekki–Nozaki amplitude holes in hydrothermal nonlinear waves. Phys. Rev. Lett. 82, 3252 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Slepneva, S. et al. Convective Nozaki–Bekki holes in a long cavity OCT laser. Opt. Express 27, 16395 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gowda, U. et al. Turbulent coherent structures in a long cavity semiconductor laser near the lasing threshold. Opt. Lett. 45, 4903 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Popp, S., Stiller, O., Aranson, I., Weber, A. & Kramer, L. Localized hole solutions and spatiotemporal chaos in the 1D complex Ginzburg–Landau equation. Phys. Rev. Lett. 70, 3880 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Popp, S., Stiller, O., Aranson, I. & Kramer, L. Hole solutions in the 1D complex Ginzburg–Landau equation. Physica D 84, 398 (1995).

    ADS 
    MathSciNet 

    Google Scholar 

  • Kazakov, D. et al. Active mid-infrared ring resonators. Nat. Commun. https://doi.org/10.1038/s41467-023-44628-7 (2024).

  • Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Observation of dispersive wave emission by temporal cavity solitons. Opt. Lett. 39, 5503 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Anderson, M. H. et al. Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. https://doi.org/10.1038/s41467-022-31916-x (2022).

  • Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600 (2017).

    CAS 

    Google Scholar 

  • Liu, D., Zhang, L., Tan, Y. & Dai, D. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightw. Technol. 39, 5910 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Mansuripur, T. S. et al. Single-mode instability in standing-wave lasers: the quantum cascade laser as a self-pumped parametric oscillator. Phys. Rev. https://doi.org/10.1103/physreva.94.063807 (2016).

  • White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2022).

    ADS 

    Google Scholar 

  • Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. https://doi.org/10.1038/ncomms6192 (2014).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *