Goldin, G. A., Menikoff, R. & Sharp, D. H. Comments on ‘general theory for quantum statistics in two dimensions’. Phys. Rev. Lett. 54, 603–603 (1985).
Google Scholar
Moore, G. & Seiberg, N. Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989).
Google Scholar
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).
Google Scholar
Wen, X. G. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. 66, 802–805 (1991).
Google Scholar
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Google Scholar
Wen, X.-G. Quantum Field Theory of Many-body Systems Oxford Graduate Texts (Oxford Univ. Press, 2010).
Leinaas, J. M. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B 37, 1–23 (1977).
Google Scholar
Goldin, G. A., Menikoff, R. & Sharp, D. H. Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect. J. Math. Phys. 22, 1664–1668 (1981).
Google Scholar
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
Google Scholar
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Google Scholar
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
Google Scholar
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
Google Scholar
Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
Google Scholar
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Google Scholar
Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://arxiv.org/abs/2208.01863 (2022).
Iqbal, M. et al. Topological order from measurements and feed-forward on a trapped ion quantum computer. Preprint at https://arxiv.org/abs/2302.01917 (2023).
Foss-Feig, M. et al. Experimental demonstration of the advantage of adaptive quantum circuits. Preprint at https://arxiv.org/abs/2302.03029 (2023).
Pan, W. et al. Exact quantization of even-denominator fractional quantum Hall state at ν=5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).
Google Scholar
Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).
Google Scholar
Ma, K. K. W., Peterson, M. R., Scarola, V. W. & Yang, K. in Encyclopedia of Condensed Matter Physics 2nd edn (ed. Chakraborty, T.) 324–365 (Academic Press, 2024); https://www.sciencedirect.com/science/article/pii/B9780323908009001359.
Willett, R. et al. Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding. Phys. Rev. X 13, 011028 (2023).
Google Scholar
Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).
Google Scholar
Kitaev, A. Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 44, 131–136 (2001).
Google Scholar
Microsoft Quantum InAs–Al hybrid devices passing the topological gap protocol. Phys. Rev. B 107, 245423 (2023).
Google Scholar
Bombin, H. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev. Lett. 105, 030403 (2010).
Google Scholar
Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).
Google Scholar
Xu, S. et al. Digital simulation of projective non-Abelian anyons with 68 superconducting qubits. Chin. Phys. Lett. 40, 060301 (2023).
Google Scholar
Cui, S. X., Hong, S.-M. & Wang, Z. Universal quantum computation with weakly integral anyons. Quantum Inf. Process. 14, 2687–2727 (2015).
Google Scholar
Barkeshli, M. & Sau, J. D. Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires. Preprint at https://arxiv.org/abs/1509.07135 (2015).
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Theory of defects in Abelian topological states. Phys. Rev. B 88, 235103 (2013).
Google Scholar
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Genons, twist defects, and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).
Google Scholar
Cong, I., Cheng, M. & Wang, Z. Universal quantum computation with gapped boundaries. Phys. Rev. Lett. 119, 170504 (2017).
Google Scholar
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).
Google Scholar
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Google Scholar
Moses, S. A. et al. A race track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).
Google Scholar
Liu, Y.-J., Shtengel, K., Smith, A. & Pollmann, F. Methods for simulating string-net states and anyons on a digital quantum computer. PRX Quantum 3, 040315 (2022).
Google Scholar
Aharonov, D. & Touati, Y. Quantum circuit depth lower bounds for homological codes. Preprint at https://arxiv.org/abs/1810.03912 (2018).
Raussendorf, R., Bravyi, S. & Harrington, J. Long-range quantum entanglement in noisy cluster states. Phys. Rev. A 71, 062313 (2005).
Google Scholar
Bolt, A., Duclos-Cianci, G., Poulin, D. & Stace, T. Foliated quantum error-correcting codes. Phys. Rev. Lett. 117, 070501 (2016).
Google Scholar
Piroli, L., Styliaris, G. & Cirac, J. I. Quantum circuits assisted by local operations and classical communication: transformations and phases of matter. Phys. Rev. Lett. 127, 220503 (2021).
Google Scholar
Tantivasadakarn, N., Vishwanath, A. & Verresen, R. Hierarchy of topological order from finite-depth unitaries, measurement, and feedforward. PRX Quantum 4, 020339 (2023).
Google Scholar
Shi, B. Seeing topological entanglement through the information convex. Phys. Rev. Res. 1, 033048 (2019).
Google Scholar
Tantivasadakarn, N., Thorngren, R., Vishwanath, A. & Verresen, R. Long-range entanglement from measuring symmetry-protected topological phases. Preprint at https://arxiv.org/abs/2112.01519 (2022).
Verresen, R., Tantivasadakarn, N. & Vishwanath, A. Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices. Preprint at https://arxiv.org/abs/2112.03061 (2022).
Bravyi, S., Kim, I., Kliesch, A. & Koenig, R. Adaptive constant-depth circuits for manipulating non-Abelian anyons. Preprint at https://arxiv.org/abs/2205.01933 (2022).
Tantivasadakarn, N., Verresen, R. & Vishwanath, A. Shortest route to non-Abelian topological order on a quantum processor. Phys. Rev. Lett. 131, 060405 (2023).
Google Scholar
Yoshida, B. Topological phases with generalized global symmetries. Phys. Rev. B 93, 155131 (2016).
Google Scholar
Potter, A. C. & Vasseur, R. Symmetry constraints on many-body localization. Phys. Rev. B 94, 224206 (2016).
Google Scholar
Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condensed Matter Phys. 6, 299–324 (2015).
Google Scholar
Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).
Google Scholar
Wang, C. & Levin, M. Topological invariants for gauge theories and symmetry-protected topological phases. Phys. Rev. B 91, 165119 (2015).
Google Scholar
Wang, J., Wen, X.-G. & Yau, S.-T. Quantum statistics and spacetime surgery. Phys. Lett. B 807, 135516 (2020).
Google Scholar
Putrov, P., Wang, J. & Yau, S.-T. Braiding statistics and link invariants of bosonic/fermionic topological quantum matter in 2+1 and 3+1 dimensions. Ann. Phys. 384, 254–287 (2017).
Google Scholar
Kulkarni, A., Mignard, M. & Schauenburg, P. A topological invariant for modular fusion categories. Preprint at https://arxiv.org/abs/1806.03158 (2021).
Dauphinais, G. & Poulin, D. Fault-tolerant quantum error correction for non-Abelian anyons. Commun. Math. Phys. 355, 519–560 (2017).
Google Scholar
Lu, T.-C., Lessa, L. A., Kim, I. H. & Hsieh, T. H. Measurement as a shortcut to long-range entangled quantum matter. PRX Quantum 3, 040337 (2022).
Google Scholar
Zhu, G.-Y., Tantivasadakarn, N., Vishwanath, A., Trebst, S. & Verresen, R. Nishimori’s cat: stable long-range entanglement from finite-depth unitaries and weak measurements. Phys. Rev. Lett. 131, 200201 (2023).
Lee, J. Y., Ji, W., Bi, Z. & Fisher, M. P. A. Decoding measurement-prepared quantum phases and transitions: from Ising model to gauge theory, and beyond. Preprint at https://arxiv.org/abs/2208.11699 (2022).
Lu, T.-C., Zhang, Z., Vijay, S. & Hsieh, T. H. Mixed-state long-range order and criticality from measurement and feedback. PRX Quantum 4, 030318 (2023).
Google Scholar
Mochon, C. Anyon computers with smaller groups. Phys. Rev. A 69, 032306 (2004).
Google Scholar