Strange India All Strange Things About India and world


  • Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940–940 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334, 974–977 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

    CAS 
    Article 

    Google Scholar 

  • Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B. & Rees, D. C. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kang, W., Lee, C. C., Jasniewski, A. J., Ribbe, M. W. & Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 368, 1381–1385 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mori, H., Seino, H., Hidai, M. & Mizobe, Y. Isolation of a cubane-type metal sulfido cluster with a molecular nitrogen ligand. Angew. Chem. Int. Ed. 46, 5431–5434 (2007).

    CAS 
    Article 

    Google Scholar 

  • Ohki, Y. et al. N2 activation on a molybdenum–titanium–sulfur cluster. Nat. Commun. 9, 3200 (2018).

    ADS 
    Article 

    Google Scholar 

  • McSkimming, A. & Suess, D. L. M. Dinitrogen binding and activation at a molybdenum–iron–sulfur cluster. Nat. Chem. 13, 666–670 (2021).

    CAS 
    Article 

    Google Scholar 

  • Smith, B. E. et al. Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185–186, 669–687 (1999).

    Article 

    Google Scholar 

  • Ohki, Y. et al. Cubane-type [Mo3S4M] clusters with first-row groups 4–10 transition-metal halides supported by C5Me5 ligands on molybdenum. Chem. Eur. J. 24, 17138–17147 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ohki, Y. et al. Synthesis of [Mo3S4] clusters from half-sandwich molybdenum(V) chlorides and their application as platforms for [Mo3S4Fe] cubes. Inorg. Chem. 58, 5230–5240 (2019).

    CAS 
    Article 

    Google Scholar 

  • Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chalkley, M. J., Drover, M. W. & Peters, J. C. Catalytic N2-to-NH3 (or -N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tanabe, Y. & Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild con. Chem. Soc. Rev. 50, 5201–5242 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lee, S. C. & Holm, R. H. The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135–1157 (2004).

    CAS 
    Article 

    Google Scholar 

  • Tanifuji, K. & Ohki, Y. Metal–sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 120, 5194–5251 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev. 39, 4044–4056 (2010).

    CAS 
    Article 

    Google Scholar 

  • Čorić, I., Mercado, B. Q., Bill, E., Vinyard, D. J. & Holland, P. L. Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015).

    ADS 
    Article 

    Google Scholar 

  • Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yuki, M. et al. Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nat. Commun. 3, 1254 (2012).

    ADS 
    Article 

    Google Scholar 

  • Ung, G. & Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2 and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2015).

    CAS 

    Google Scholar 

  • Araake, R., Sakadani, K., Tada, M., Sakai, Y. & Ohki, Y. [Fe4] and [Fe6] hydride clusters supported by phosphines: synthesis, characterization, and application in N2 reduction. J. Am. Chem. Soc. 139, 5596–5606 (2017).

    CAS 
    Article 

    Google Scholar 

  • Piascik, A. D., Li, R., Wilkinson, H. J., Green, J. C. & Ashley, A. E. Fe-catalyzed conversion of N2 to N(SiMe3)3 via an Fe-hydrazido resting state. J. Am. Chem. Soc. 140, 10691–10694 (2018).

    CAS 
    Article 

    Google Scholar 

  • Liang, Q. et al. [2Fe–2S] cluster supported by redox-active o-phenylenediamide ligands and its application toward dinitrogen reduction. Inorg. Chem. 60, 13811–13820 (2021).

    CAS 
    Article 

    Google Scholar 

  • Tanaka, H. et al. Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J. Am. Chem. Soc. 133, 3498–3506 (2011).

    CAS 
    Article 

    Google Scholar 

  • Li, M., Gupta, S. K., Dechert, S., Demeshko, S. & Meyer, F. Merging pincer motifs and potential metal-metal cooperativity in cobalt dinitrogen chemistry: efficient catalytic silylation of N2 to N(SiMe3)3. Angew. Chem. Int. Ed. 60, 14480–14487 (2021).

    CAS 
    Article 

    Google Scholar 

  • Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).

    CAS 
    Article 

    Google Scholar 

  • Piascik, A. D. et al. Cationic silyldiazenido complexes of the Fe(diphosphine)2(N2) platform: structural and electronic models for an elusive first intermediate in N2 fixation. Chem. Commun. 53, 7657–7660 (2017).

    CAS 
    Article 

    Google Scholar 

  • Lee, Y., Mankad, N. P. & Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2, 558–565 (2010).

    CAS 
    Article 

    Google Scholar 

  • Rao, P. V. & Holm, R. H. Synthetic analogues of the active sites of iron−sulfur proteins. Chem. Rev. 104, 527–560 (2004).

    CAS 
    Article 

    Google Scholar 

  • Neese, F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 337, 181–192 (2002).

    Article 

    Google Scholar 

  • Dorantes, M. J., Moore, J. T., Bill, E., Mienert, B. & Lu, C. C. Bimetallic iron–tin catalyst for N2 to NH3 and a silyldiazenido model intermediate. Chem. Commun. 56, 11030–11033 (2020).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.