Strange IndiaStrange India


  • Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2019).

    Article 
    ADS 

    Google Scholar 

  • Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, S. et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. et al. Barrier designs in perovskite solar cells for long-term stability. Adv. Energy Mater. 10, 2001610 (2020).

    Article 
    CAS 

    Google Scholar 

  • Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature https://doi.org/10.1038/s41586-023-06745-7 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, Z. et al. Out-of-plane cations homogenise perovskite composition for solar cells. Nature https://doi.org/10.1038/s41586-023-06784-0 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. & Zhang, W. Improving the stability of inverted perovskite solar cells towards commercialization. Commun. Mater. 3, 65 (2022).

    Article 

    Google Scholar 

  • Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023).

    Article 
    ADS 

    Google Scholar 

  • Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nazir, G. et al. Stabilization of perovskite solar cells: Recent developments and future perspectives. Adv. Mater. 34, 2204380 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, J. T. et al. Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Commun. Mater. 3, 39 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, J., Dong, Q., Li, N. & Wang, L. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7, 1602922 (2017).

    Article 

    Google Scholar 

  • Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. High-efficiency and durable inverted perovskite solar cells with thermally-induced phase-change electron extraction layer. Adv. Energy Mater. 11, 2102844 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, M.-H. et al. Low-power-consumption and long-lifetime OLED with a high Tg n-type organic transport material. Proc. SPIE 5519, 263 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on isos procedures. Nat. Energy 5, 35–49 (2020).

    Article 
    ADS 

    Google Scholar 

  • Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76–81 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ohno, Y. XPS studies of the intermediate valence state of Yb in (YbS)1.25CrS2. J. Electron. Spectros. Relat. Phenomena 165, 1–4 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lang, W., Padalia, B., Watson, L. & Fabian, D. Reinvestigation of the core levels of pure and oxidised ytterbium and lutetium. J. Electron. Spectrosc. Relat. Phenomena 7, 357–358 (1975).

    Article 
    CAS 

    Google Scholar 

  • He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, N., Wang, D., Hu, J., Guan, L. & Lu, Z.-H. Measuring energy gaps of organic semiconductors by electron energy loss spectroscopies. Phys. Status Solidi B 259, 2100459 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chen, P. et al. Refining perovskite heterojunctions for effective light-emitting solar cells. Adv. Mater. 35, 2208178 (2023).

    Article 
    CAS 

    Google Scholar 

  • Greiner, M. T., Chai, L., Helander, M. G., Tang, W.-M. & Lu, Z.-H. Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 23, 215–226 (2013).

    Article 
    CAS 

    Google Scholar 

  • Mott, N. Electrons in glass. Nature 257, 15–18 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15, 714–726 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tong, J. et al. Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6, 232–248 (2020).

    Article 

    Google Scholar 

  • Ganose, A. M., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond. Nat. Commun. 13, 4715 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tremblay, M.-H. et al. Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: Application in stable p-i-n perovskite solar cells. J. Mater. Chem. A 9, 9347–9353 (2021).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *