Sherrington, C. The Integrative Action of the Nervous System (Cambridge Univ. Press Archive, 1952).
Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J.-C. & Rubin, G. M. Genetic reagents for making Split-GAL4 lines in Drosophila. Genetics 209, 31–35 (2018).
Google Scholar
Milde, J. J., Seyan, H. S. & Strausfeld, N. J. The neck motor system of the fly Calliphora erythrocephala. II Sensory organization. J. Comp. Physiol. A 160, 225–238 (1987).
Google Scholar
Merel, J., Botvinick, M. & Wayne, G. Hierarchical motor control in mammals and machines. Nat. Commun. 10, 5489 (2019).
Google Scholar
Scott, S. H. A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends Neurosci. 39, 512–526 (2016).
Google Scholar
McKellar, C. E., Siwanowicz, I., Dickson, B. J. & Simpson, J. H. Controlling motor neurons of every muscle for fly proboscis reaching. eLife 9, e54978 (2020).
Google Scholar
Baek, M. & Mann, R. S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916 (2009).
Google Scholar
Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020).
Google Scholar
Strausfeld, N. J., Seyan, H. S. & Milde, J. J. The neck motor system of the fly Calliphora erythrocephala. I Muscles and motor neurons. J. Comp. Physiol. A 160, 205–224 (1987).
Google Scholar
Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).
Google Scholar
Hengstenberg, R. Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. Semin. Neurosci. 3, 19–29 (1991).
Google Scholar
Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280–294 (2017).
Google Scholar
Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).
Google Scholar
Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila lobula plate tangential neurons with predictions for their optic flow sensitivity. eLife 13, RP93659 (2024).
Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).
Google Scholar
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).
Google Scholar
Wertz, A., Haag, J. & Borst, A. Integration of binocular optic flow in cervical neck motor neurons of the fly. J. Comp. Physiol. A 198, 655–668 (2012).
Google Scholar
Huston, S. J. & Krapp, H. G. Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, e173 (2008).
Google Scholar
Fisher, N. I. Statistical Analysis of Circular Data (Cambridge Univ. Press, 1993).
Graziano, M. S. A., Taylor, C. S. R. & Moore, T. Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–851 (2002).
Google Scholar
Griffin, D. M., Hudson, H. M., Belhaj-Saïf, A. & Cheney, P. D. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex. J. Neurosci. 34, 1647–1656 (2014).
Google Scholar
Klier, E. M., Wang, H. & Crawford, J. D. The superior colliculus encodes gaze commands in retinal coordinates. Nat. Neurosci. 4, 627–632 (2001).
Google Scholar
Field, L. H. & Matheson, T. Chordotonal organs of insects. Adv. Insect Physiol. 27, 1–228 (1998).
Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol. 28, R194–R203 (2018).
Google Scholar
Preuss, T. & Hengstenberg, R. Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala. J. Comp. Physiol. A 171, 483–493 (1992).
Google Scholar
Feldman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biofizika 11, 565–578 (1966).
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying the execution of movement: a biological perspective. Science 253, 287–291 (1991).
Google Scholar
Sainburg, R. L. Should the equilibrium point hypothesis (EPH) be considered a scientific theory? Motor Control 19, 142–148 (2015).
Google Scholar
Huston, S. J. & Krapp, H. G. Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J. Neurosci. 29, 13097–13105 (2009).
Google Scholar
Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).
Google Scholar
Shadmehr, R. From equilibrium point to optimal control. Motor Control 14, e25–e30 (2010).
Google Scholar
Gorb, S. N. The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton–muscle organisation, frictional surfaces and inverse-kinematic model of leg movements. Arthropod Struct. Dev. 33, 201–220 (2004).
Google Scholar
Siwanowicz, I. & Burrows, M. Three dimensional reconstruction of energy stores for jumping in planthoppers and froghoppers from confocal laser scanning microscopy. eLife 6, e23824 (2017).
Google Scholar
Sober, S. J., Sponberg, S., Nemenman, I. & Ting, L. H. Millisecond spike timing codes for motor control. Trends Neurosci. 41, 644–648 (2018).
Google Scholar
Loeb, E. P., Giszter, S. F., Borghesani, P. & Bizzi, E. Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosens. Mot. Res. 10, 81–95 (1993).
Google Scholar
Caggiano, V., Cheung, V. C. K. & Bizzi, E. An optogenetic demonstration of motor modularity in the mammalian spinal cord. Sci. Rep. 6, 35185 (2016).
Google Scholar
Gilbert, C. & Bauer, E. Resistance reflex that maintains upright head posture in the flesh fly Neobellieria bullata (Sarcophagidae). J. Exp. Biol. 201, 2735–2744 (1998).
Google Scholar
Cellini, B., Salem, W. & Mongeau, J.-M. Mechanisms of punctuated vision in fly flight. Curr. Biol. 31, 4009–4024 (2021).
Google Scholar
Ijspeert, A., Nakanishi, J. & Schaal, S. Learning attractor landscapes for learning motor primitives. Adv. Neural Inf. Process. Syst. 15, 1547–1554 (2002).
Durr, V. & Matheson, T. Graded limb targeting in an insect is caused by the shift of a single movement pattern. J. Neurophysiol. 90, 1754–1765 (2003).
Google Scholar
Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).
Google Scholar
Masullo, L. et al. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol. 29, 2892–2904 (2019).
Google Scholar
Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. Nat. Neurosci. 3, 1212–1217 (2000).
Google Scholar
Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 110, 2124–2138 (2022).
Google Scholar
Cruz, T. L., Pérez, S. M. & Chiappe, M. E. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. Curr. Biol. 31, 4596–4607 (2021).
Google Scholar
Tweed, D., Cadera, W. & Vilis, T. Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Res. 30, 97–110 (1990).
Google Scholar
Bogovic, J. A. et al. An unbiased template of the Drosophila brain and ventral nerve cord. PLoS ONE 15, e0236495 (2020).
Google Scholar
Rokicki, K. et al. Janelia workstation codebase. GitHub https://github.com/JaneliaSciComp/workstation (2019).
Luan, H., Peabody, N. C., Vinson, C. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).
Google Scholar
Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).
Google Scholar
Tirian, L. & Dickson, B. J. The VT GAL4, LexA and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. Preprint at bioRxiv https://doi.org/10.1101/198648 (2017).
Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).
Google Scholar
Bloomquist, B. T. et al. Isolation of a putative phospholipase C gene of Drosophila, norpA and its role in phototransduction. Cell 54, 723–733 (1988).
Google Scholar
Lee, A., Kabra, M., Branson, K., Robie, A. A. & Roian, E. APT: animal part tracker. GitHub https://github.com/kristinbranson/APT (2018).
Horn, B. K. P. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629 (1987).
Google Scholar
Yershova, A., Jain, S., Lavalle, S. M. & Mitchell, J. C. Generating uniform incremental grids on SO(3) using the Hopf fibration. Int. J. Rob. Res. 29, 801–812 (2010).
Google Scholar
Markley, F. L., Cheng, Y., Crassidis, J. L. & Oshman, Y. Averaging quaternions. J. Guid. Control Dynam. 30, 1193–1197 (2007).
Google Scholar
Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nat. Neurosci. 13, 393–399 (2010).
Google Scholar
Nordström, K., Barnett, P. D., de Miguel, I. M. M., Brinkworth, R. S. A. & O’Carroll, D. C. Sexual dimorphism in the hoverfly motion vision pathway. Curr. Biol. 18, 661–667 (2008).
Google Scholar
Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967–E2976 (2015).
Google Scholar