Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).
Google Scholar
Kasen, D. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 939–965 (Springer, 2017).
Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. Lett. 865, L3 (2018).
Google Scholar
Ho, A. Y. Q. et al. A search for extragalactic fast blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).
Google Scholar
Margutti, R. et al. An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).
Google Scholar
Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146–L150 (2018).
Google Scholar
Yao, Y. et al. The X-ray and radio loud fast blue optical transient AT2020mrf: implications for an emerging class of engine-driven massive star explosions. Astrophys. J. 934, 104 (2022).
Google Scholar
Chen, Y. et al. Late-time HST observations of AT 2018cow II: evolution of a UV-bright underlying source 2-4 years post-explosion. Astrophys. J. 955, 43 (2023).
Pasham, D. R. et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249–258 (2021).
Google Scholar
Zhang, W. et al. A possible 250 s X-ray quasi-periodicity in the fast blue optical transient AT2018cow. Res. Astron. Astrophys. 22, 125016 (2022).
Google Scholar
Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).
Google Scholar
Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).
Google Scholar
Munoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2022-09-07. Transient Name Server Discovery Report, No. 2022–2602 (2022).
Förster, F. et al. The Automatic Learning for the Rapid Classification of Events (ALeRCE) alert broker. Astron. J. 161, 242 (2021).
Google Scholar
Ho, A. Y. Q. et al. Keck/LRIS observations of AT2022tsd, a fast-rising optical transient coincident with a z=0.256 galaxy. Transient Name Server AstroNote 2022-199 (2022).
Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Google Scholar
Ho, A. Y. Q. & Perley, D. A. VLA Ku-band detection of AT2022tsd. Transient Name Server AstroNote 2022-205 (2022).
Schulze, S., Ho, A. Y. Q., Perley, D. A., Yan, L. & Fremling, C. Swift X-ray detection of AT2022tsd. Transient Name Server AstroNote 2022-207 (2022).
Metzger, B. D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/Black Hole mergers. Astrophys. J. 932, 84 (2022).
Google Scholar
Ho, A. Y. Q. et al. Discovery of minute-timescale optical flares with supernova-like luminosities at the position of the luminous fast blue optical transient AT2022tsd (the “Tasmanian Devil”). Transient Name Server AstroNote 2022-267 (2022).
Matthews, D. et al. Chandra-NuSTAR detection of X-ray emission at the location of FBOT AT2022tsd. Transient Name Server AstroNote 2022-218 (2022).
Perley, D. A. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).
Google Scholar
Quataert, E., Lecoanet, D. & Coughlin, E. R. Black hole accretion discs and luminous transients in failed supernovae from non-rotating supergiants. Mon. Not. R. Astron. Soc. Lett. 485, L83–L88 (2019).
Google Scholar
Kuin, N. P. M. et al. Swift spectra of AT2018cow: a white dwarf tidal disruption event?. Mon. Not. R. Astron. Soc. 487, 2505–2521 (2019).
Google Scholar
Beck, R. et al. PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).
Google Scholar
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).
Google Scholar
Finkbeiner, D. P., Davis, M. & Schlegel, D. J. Extrapolation of galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS. Astrophys. J. 524, 867 (1999).
Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).
Google Scholar
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Google Scholar
van der Walt, S. J., Crellin-Quick, A. & Bloom, J. S. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).
Google Scholar
Coughlin, M. W. et al. A data science platform to enable time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).
Google Scholar
Perley, D. A. et al. Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 508, 5138–5147 (2021).
Google Scholar
Jiang, J. A. et al. MUSSES2020J: the earliest discovery of a fast blue ultraluminous transient at redshift 1.063. Astrophys. J. Lett. 933, L36 (2022).
Google Scholar
Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).
Google Scholar
Arcavi, I. et al. Rapidly rising transients in the supernova—superluminous supernova gap. Astrophys. J. 819, 35 (2016).
Google Scholar
Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 1–43 (Springer, 2016).
Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019).
Google Scholar
Ho, A. Y. Q. et al. Luminous millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932, 116 (2022).
Google Scholar
Bright, J. S. et al. Radio and X-ray observations of the luminous fast blue optical transient AT 2020xnd. Astrophys. J. 926, 112 (2022).
Google Scholar
Phinney, E. S. in Symposium – International Astronomical Union, Volume 136: The Galactic Center 543–553 (Kluwer, 1989).
Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).
Google Scholar
Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).
Google Scholar
Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).
Google Scholar
Matthews, D. et al. Unprecedented X-ray emission from the fast blue optical transient AT2022tsd. Res. Not. AAS 7, 126 (2023).
Google Scholar
Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1986).
Nayana, A. J. & Chandra, P. uGMRT observations of a fast and blue optical transient—AT 2018cow. Astrophys. J. Lett. 912, L9 (2021).
Google Scholar
Fender, R. P. et al. Spectral evidence for a powerful compact jet from XTE J1118+480. Mon. Not. R. Astron. Soc. 322, L23–L27 (2001).
Google Scholar
Tetarenko, A. J. et al. Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 504, 3862–3883 (2021).
Google Scholar
Fender, R. P. et al. Comprehensive coverage of particle acceleration and kinetic feedback from the stellar mass black hole V404 Cygni. Mon. Not. R. Astron. Soc. 518, 1243–1259 (2023).
Google Scholar
Falcke, H. et al. The simultaneous spectrum of Sagittarius A* from 20 centimeters to 1 millimeter and the nature of the millimeter excess. Astrophys. J. 499, 731 (1998).
Google Scholar
Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810 (1998).
Google Scholar
Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).
Google Scholar
Fulton, M. et al. Pan-STARRS observations of AT2022tsd. Transient Name Server AstroNote 2022-206 (2022).
Chomiuk, L., Metzger, B. D. & Shen, K. J. New insights into classical novae. Annu. Rev. Astron. Astrophys. 59, 391–444 (2021).
Google Scholar
Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).
Google Scholar
Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).
Google Scholar
Szkody, P. et al. Cataclysmic variables in the second year of the Zwicky Transient Facility. Astron. J. 162, 94 (2021).
Google Scholar
Polzin, A. et al. The luminosity phase space of galactic and extragalactic X-ray transients out to intermediate redshifts. Preprint at https://arxiv.org/abs/2211.01232 (2023).
Coppejans, D. L. & Knigge, C. The case for jets in cataclysmic variables. New Astron. Rev. 89, 101540 (2020).
Google Scholar
Morales-Rueda, L. & Marsh, T. R. Spectral atlas of dwarf novae in outburst. Mon. Not. R. Astron. Soc. 332, 814–826 (2002).
Google Scholar
Han, Z. et al. Spectroscopic properties of the dwarf nova-type cataclysmic variables observed by LAMOST. Publ. Astron. Soc. Jpn. 72, 76 (2020).
Google Scholar
Fertig, D., Mukai, K., Nelson, T. & Cannizzo, J. K. The fall and the rise of X-rays from dwarf novae in outburst: RXTE observations of VW Hydri and WW Ceti. Publ. Astron. Soc. Pac. 123, 1054 (2011).
Google Scholar
Bruch, A. A comparative study of the strength of flickering in cataclysmic variables. Mon. Not. R. Astron. Soc. 503, 953–971 (2021).
Google Scholar
Ilbert, O. et al. in Panoramic Views of Galaxy Formation and Evolution ASP Conference Series Vol. 399 169 (Astronomical Society of the Pacific, 2008).
Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).
Google Scholar
Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).
Google Scholar
Tsvetkova, A. et al. The Konus–Wind Catalog of Gamma-Ray Bursts with Known Redshifts. II. Waiting-mode bursts simultaneously detected by Swift/BAT. Astrophys. J. 908, 83 (2021).
Google Scholar
Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 8929054 (2017).
Google Scholar
Ho, A. Y. Q. et al. Gemini, Swift, and VLA observations of AT2022abfc, a radio-loud fast optical transient coincident with a z=0.212 galaxy. Transient Name Server AstroNote 2022-275 (2022).
Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton catastrophe. Astrophys. J. 426, 51–59 (1994).
Google Scholar
Longair, M. S. High Energy Astrophysics (Cambridge Univ. Press, 2011).
Moffet, A. T. in Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) (Univ. Chicago Press, 1975).
Chen, Y. et al. Late-time HST observations of AT 2018cow I: further constraints on the fading prompt emission and thermal properties 50-60 days post-explosion. Astrophys. J. 955, 42 (2023).
Gottlieb, O., Tchekhovskoy, A. & Margutti, R. Shocked jets in CCSNe can power the zoo of fast blue optical transients. Mon. Not. R. Astron. Soc. 513, 3810–3817 (2022).
Google Scholar
Margalit, B. & Quataert, E. Thermal electrons in mildly relativistic synchrotron blast waves. Astrophys. J. Lett. 923, L14 (2021).
Google Scholar
Wright, A. H. et al. Galaxy and mass assembly: accurate panchromatic photometry from optical priors using LAMBDAR. Mon. Not. R. Astron. Soc. 460, 765–801 (2016).
Google Scholar
Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).
Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).
Google Scholar
Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486 (2009).
Google Scholar
Foreman-Mackey, D., Hogg, D. W. & Morton, T. D. Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophys. J. 795, 64 (2014).
Google Scholar
Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).
Google Scholar
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Google Scholar
Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).
Google Scholar
Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).
Google Scholar
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763 (2003).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682 (2000).
Google Scholar
Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012).
Google Scholar
Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993).
Google Scholar
Woosley, S. E. & Heger, A. Long gamma-ray transients from collapsars. Astrophys. J. 752, 32 (2012).
Google Scholar
Kashiyama, K. & Quataert, E. Fast luminous blue transients from newborn black holes. Mon. Not. R. Astron. Soc. 451, 2656–2662 (2015).
Google Scholar
Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).
Google Scholar
Lyman, J. D. et al. Studying the environment of AT 2018cow with MUSE. Mon. Not. R. Astron. Soc. 495, 992–999 (2020).
Google Scholar
Maund, J. R. et al. A flash of polarized optical light points to an aspherical ‘cow’. Mon. Not. R. Astron. Soc. 521, 3323–3332 (2023).
Google Scholar
Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature 455, 183–188 (2008).
Google Scholar
Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophys. J. 720, 1513 (2010).
Google Scholar
Nesci, R. et al. Multiwavelength flare observations of the blazar S5 1803+784. Mon. Not. R. Astron. Soc. 502, 6177–6187 (2021).
Google Scholar
Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).
Google Scholar
Villar, V. A., Berger, E., Metzger, B. D. & Guillochon, J. Theoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space. Astrophys. J. 849, 70 (2017).
Google Scholar
Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).
Google Scholar
Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).
Google Scholar
Andreoni, I. et al. A very luminous jet from the disruption of a star by a massive black hole. Nature 612, 430–434 (2022).
Google Scholar
Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).
Google Scholar
Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).
Google Scholar
D’Elia, V. et al. GRB 171205A/SN 2017iuk: a local low-luminosity gamma-ray burst. Astron. Astrophys. 619, A66 (2018).
Google Scholar
Ho, A. Y. Q. et al. SN 2020bvc: a broad-line type Ic supernova with a double-peaked optical light curve and a luminous X-ray and radio counterpart. Astrophys. J. 902, 86 (2020).
Google Scholar
Zauderer, B. A. et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 476, 425–428 (2011).
Google Scholar
Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).
Google Scholar
Sheth, K. et al. Millimeter observations of GRB 030329: continued evidence for a two-component jet. Astrophys. J. Lett. 595, L33 (2003).
Google Scholar
Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).
Google Scholar
Laskar, T. et al. First ALMA light curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).
Google Scholar
Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).
Google Scholar
Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).
Google Scholar
Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GRB Coordinates Network, Circular Service, No. 22252, #1 (2017).
Weiler, K. W. et al. Long-term radio monitoring of SN 1993J. Astrophys. J. 671, 1959 (2007).
Google Scholar
Soderberg, A. M. et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 463, 513–515 (2010).
Google Scholar
Horesh, A. et al. An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).
Google Scholar
Corsi, A. et al. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment. Astrophys. J. 782, 42 (2014).
Google Scholar
Maeda, K. et al. The final months of massive star evolution from the circumstellar environment around SN Ic 2020oi. Astrophys. J. 918, 34 (2021).
Google Scholar
Mangano, V., Burrows, D. N., Sbarufatti, B. & Cannizzo, J. K. The definitive X-ray light curve of Swift J164449.3+573451. Astrophys. J. 817, 103 (2016).
Google Scholar
Kouveliotou, C. et al. Chandra observations of the X-ray environs of SN 1998bw/GRB 980425. Astrophys. J. 608, 872 (2004).
Google Scholar
Tiengo, A., Mereghetti, S., Ghisellini, G., Tavecchio, F. & Ghirlanda, G. Late evolution of the X-ray afterglow of GRB 030329. Astron. Astrophys. 423, 861–865 (2004).
Google Scholar
Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & Frail, D. A. The radio and X-ray luminous SN 2003bg and the circumstellar density variations around radio supernovae. Astrophys. J. 651, 1005 (2006).
Google Scholar
Margutti, R. et al. The signature of the central engine in the weakest relativistic explosions: GRB 100316D. Astrophys. J. 778, 18 (2013).
Google Scholar
Dwarkadas, V. V. & Gruszko, J. What are published X-ray light curves telling us about young supernova expansion?. Mon. Not. R. Astron. Soc. 419, 1515–1524 (2012).
Google Scholar
Mucciarelli, P., Zampieri, L., Treves, A., Turolla, R. & Falomo, R. X-ray and optical variability of the ultraluminous X-ray source NGC 1313 X-2. Astrophys. J. 658, 999 (2007).
Google Scholar
Kasliwal, M. M. et al. GRB 070610: a curious galactic transient. Astrophys. J. 678, 1127 (2008).
Google Scholar
Stefanescu, A. et al. Very fast optical flaring from a possible new Galactic magnetar. Nature 455, 503–505 (2008).
Google Scholar
Castro-Tirado, A. J. et al. Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars. Nature 455, 506–509 (2008).
Google Scholar
Svinkin, D. et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 589, 211–213 (2021).
Google Scholar
Frederiks, D. et al. Giant flare in SGR 1806-20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).
Google Scholar
Hankins, T. H., Kern, J. S., Weatherall, J. C. & Eilek, J. A. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature 422, 141–143 (2003).
Google Scholar
Fender, R. P., Pooley, G. G., Brocksopp, C. & Newell, S. J. Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 290, L65–L69 (1997).
Google Scholar
van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).
Google Scholar
Payne, A. V. et al. Chandra, HST/STIS, NICER, Swift, and TESS detail the flare evolution of the repeating nuclear transient ASASSN-14ko. Astrophys. J. 951, 134 (2023).
Google Scholar
Marrone, D. P. et al. An X-ray, infrared, and submillimeter flare of Sagittarius A*. Astrophys. J. 682, 373 (2008).
Google Scholar
Abramowski, A. et al. The 2010 very high energy γ-ray flare and 10 years of multi-wavelength observations of M 87. Astrophys. J. 746, 151 (2012).
Google Scholar
Miniutti, G. et al. Repeating tidal disruptions in GSN 069: long-term evolution and constraints on quasi-periodic eruptions’ models. Astron. Astrophys. 670, A93 (2023).
Google Scholar
van Dyk, S. D., Weiler, K. W., Sramek, R. A. & Panagia, N. SN 1988Z: the most distant radio supernova. Astrophys. J. Lett. 419, L69 (1993).
Google Scholar
Weiler, K. W., Sramek, R. A., Panagia, N., van der Hulst, J. M. & Salvati, M. Radio supernovae. Astrophys. J. 301, 790–812 (1986).
Google Scholar
Soderberg, A. M. et al. The radio and X-ray-luminous type Ibc supernova 2003L. Astrophys. J. 621, 908 (2005).
Google Scholar
Salas, P., Bauer, F. E., Stockdale, C. & Prieto, J. L. SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined Type Ic supernovae. Mon. Not. R. Astron. Soc. 428, 1207–1217 (2013).
Google Scholar
Alexander, K. D., Berger, E., Guillochon, J., Zauderer, B. A. & Williams, P. K. G. Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. Astrophys. J. Lett. 819, L25 (2016).
Google Scholar
Laskar, T., Coppejans, D. L., Margutti, R. & Alexander, K. D. GRB 171205A: VLA detection. GRB Coordinates Network, Circular Service, No. 22216, #1 (2017).
Dong, D. Z. et al. A transient radio source consistent with a merger-triggered core collapse supernova. Science 373, 1125–1129 (2021).
Google Scholar
Mooley, K. P. et al. Late-time evolution and modeling of the off-axis gamma-ray burst candidate FIRST J141918.9+394036. Astrophys. J. 924, 16 (2022).
Google Scholar
Graham, M. J. et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Google Scholar
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).
Google Scholar
Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).
Google Scholar
Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).
Google Scholar
Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).
Google Scholar
Patterson, M. T. et al. The Zwicky Transient Facility alert distribution system. Publ. Astron. Soc. Pac. 131, 018001 (2019).
Google Scholar
Duev, D. A. et al. Real-bogus classification for the Zwicky Transient Facility using deep learning. Mon. Not. R. Astron. Soc. 489, 3582–3590 (2019).
Google Scholar
Tachibana, Y. & Miller, A. A. A morphological classification model to identify unresolved PanSTARRS1 sources: application in the ZTF real-time pipeline. Publ. Astron. Soc. Pac. 130, 128001 (2018).
Google Scholar
Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99 (2012).
Google Scholar
Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).
Google Scholar
Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).
Google Scholar
Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).
Google Scholar
Shingles, L. et al. Release of the ATLAS Forced Photometry server for public use. Transient Name Server AstroNote 2021-7 (2021).
Steele, I. A. et al. The Liverpool Telescope: performance and first results. Proc. SPIE 5489, 679 (2004).
Google Scholar
Dhillon, V. S. et al. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope. Mon. Not. R. Astron. Soc. 444, 4009–4021 (2014).
Google Scholar
Kumar, H. et al. India’s first robotic eye for time-domain astrophysics: the GROWTH-India telescope. Astron. J. 164, 90 (2022).
Google Scholar
Dressler, A. et al. IMACS: the Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).
Google Scholar
Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).
Google Scholar
Dhillon, V. S. et al. ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. Mon. Not. R. Astron. Soc. 378, 825–840 (2007).
Google Scholar
Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).
Google Scholar
Buzzoni, B. et al. The ESO Faint Object Spectrograph and Camera (EFOSC). ESO Messenger 38, 9–13 (1984).
Google Scholar
Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).
Google Scholar
Ofek, E. O. et al. The Large Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).
Google Scholar
Ben-Ami, S. et al. The Large Array Survey Telescope—science goals. Publ. Astron. Soc. Pac. 135, 085002 (2023).
Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source Code Library, record ascl:1407.005 (2014).
Ofek, E. O. A code for robust astrometric solution of astronomical images. Publ. Astron. Soc. Pac. 131, 054504 (2019).
Google Scholar
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Google Scholar
Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).
Google Scholar
Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).
Google Scholar
Nayana, A. J. et al. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also known as HESS J1731-347. Mon. Not. R. Astron. Soc. 467, 155–163 (2017).
Google Scholar
Greisen, E. W. in Information Handling in Astronomy – Historical Vistas (ed. Heck, A.) 109–125 (Springer, 2003).
Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. Astrophys. J. Lett. 739, L1 (2011).
Google Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI ASP Conference Series Vol. 376 127 (Astronomical Society of the Pacific, 2007).
Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library, record ascl:1305.010 (2013).
Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).
Google Scholar
Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).
Google Scholar
Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).
Google Scholar
Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).
Google Scholar
Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).
Google Scholar
Fruscione, A. et al. CIAO: Chandra’s data analysis system. Proc. SPIE 6270, 62701V (2006).
Google Scholar
GROWTH India Telescope; https://sites.google.com/view/growthindia/.
Taggart, K. & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 503, 3931–3952 (2021).
Google Scholar