Strange IndiaStrange India


  • Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kasen, D. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 939–965 (Springer, 2017).

  • Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. Lett. 865, L3 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ho, A. Y. Q. et al. A search for extragalactic fast blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).

    Article 
    ADS 

    Google Scholar 

  • Margutti, R. et al. An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146–L150 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yao, Y. et al. The X-ray and radio loud fast blue optical transient AT2020mrf: implications for an emerging class of engine-driven massive star explosions. Astrophys. J. 934, 104 (2022).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y. et al. Late-time HST observations of AT 2018cow II: evolution of a UV-bright underlying source 2-4 years post-explosion. Astrophys. J. 955, 43 (2023).

  • Pasham, D. R. et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249–258 (2021).

    Article 
    ADS 

    Google Scholar 

  • Zhang, W. et al. A possible 250 s X-ray quasi-periodicity in the fast blue optical transient AT2018cow. Res. Astron. Astrophys. 22, 125016 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Munoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2022-09-07. Transient Name Server Discovery Report, No. 2022–2602 (2022).

  • Förster, F. et al. The Automatic Learning for the Rapid Classification of Events (ALeRCE) alert broker. Astron. J. 161, 242 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ho, A. Y. Q. et al. Keck/LRIS observations of AT2022tsd, a fast-rising optical transient coincident with a z=0.256 galaxy. Transient Name Server AstroNote 2022-199 (2022).

  • Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar 

  • Ho, A. Y. Q. & Perley, D. A. VLA Ku-band detection of AT2022tsd. Transient Name Server AstroNote 2022-205 (2022).

  • Schulze, S., Ho, A. Y. Q., Perley, D. A., Yan, L. & Fremling, C. Swift X-ray detection of AT2022tsd. Transient Name Server AstroNote 2022-207 (2022).

  • Metzger, B. D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/Black Hole mergers. Astrophys. J. 932, 84 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ho, A. Y. Q. et al. Discovery of minute-timescale optical flares with supernova-like luminosities at the position of the luminous fast blue optical transient AT2022tsd (the “Tasmanian Devil”). Transient Name Server AstroNote 2022-267 (2022).

  • Matthews, D. et al. Chandra-NuSTAR detection of X-ray emission at the location of FBOT AT2022tsd. Transient Name Server AstroNote 2022-218 (2022).

  • Perley, D. A. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Quataert, E., Lecoanet, D. & Coughlin, E. R. Black hole accretion discs and luminous transients in failed supernovae from non-rotating supergiants. Mon. Not. R. Astron. Soc. Lett. 485, L83–L88 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuin, N. P. M. et al. Swift spectra of AT2018cow: a white dwarf tidal disruption event?. Mon. Not. R. Astron. Soc. 487, 2505–2521 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Beck, R. et al. PS1-STRM: neural network source classification and photometric redshift catalogue for PS1 3π DR1. Mon. Not. R. Astron. Soc. 500, 1633–1644 (2021).

    Article 
    ADS 

    Google Scholar 

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finkbeiner, D. P., Davis, M. & Schlegel, D. J. Extrapolation of galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS. Astrophys. J. 524, 867 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    Article 
    ADS 

    Google Scholar 

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • van der Walt, S. J., Crellin-Quick, A. & Bloom, J. S. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).

    Article 
    ADS 

    Google Scholar 

  • Coughlin, M. W. et al. A data science platform to enable time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).

    Article 
    ADS 

    Google Scholar 

  • Perley, D. A. et al. Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 508, 5138–5147 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, J. A. et al. MUSSES2020J: the earliest discovery of a fast blue ultraluminous transient at redshift 1.063. Astrophys. J. Lett. 933, L36 (2022).

    Article 
    ADS 

    Google Scholar 

  • Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Arcavi, I. et al. Rapidly rising transients in the supernova—superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 1–43 (Springer, 2016).

  • Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ho, A. Y. Q. et al. Luminous millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932, 116 (2022).

    Article 
    ADS 

    Google Scholar 

  • Bright, J. S. et al. Radio and X-ray observations of the luminous fast blue optical transient AT 2020xnd. Astrophys. J. 926, 112 (2022).

    Article 
    ADS 

    Google Scholar 

  • Phinney, E. S. in Symposium – International Astronomical Union, Volume 136: The Galactic Center 543–553 (Kluwer, 1989).

  • Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

    Article 
    ADS 

    Google Scholar 

  • Matthews, D. et al. Unprecedented X-ray emission from the fast blue optical transient AT2022tsd. Res. Not. AAS 7, 126 (2023).

    Article 
    ADS 

    Google Scholar 

  • Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1986).

  • Nayana, A. J. & Chandra, P. uGMRT observations of a fast and blue optical transient—AT 2018cow. Astrophys. J. Lett. 912, L9 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fender, R. P. et al. Spectral evidence for a powerful compact jet from XTE J1118+480. Mon. Not. R. Astron. Soc. 322, L23–L27 (2001).

    Article 
    ADS 

    Google Scholar 

  • Tetarenko, A. J. et al. Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 504, 3862–3883 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fender, R. P. et al. Comprehensive coverage of particle acceleration and kinetic feedback from the stellar mass black hole V404 Cygni. Mon. Not. R. Astron. Soc. 518, 1243–1259 (2023).

    Article 
    ADS 

    Google Scholar 

  • Falcke, H. et al. The simultaneous spectrum of Sagittarius A* from 20 centimeters to 1 millimeter and the nature of the millimeter excess. Astrophys. J. 499, 731 (1998).

    Article 
    ADS 

    Google Scholar 

  • Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810 (1998).

    Article 
    ADS 

    Google Scholar 

  • Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fulton, M. et al. Pan-STARRS observations of AT2022tsd. Transient Name Server AstroNote 2022-206 (2022).

  • Chomiuk, L., Metzger, B. D. & Shen, K. J. New insights into classical novae. Annu. Rev. Astron. Astrophys. 59, 391–444 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Szkody, P. et al. Cataclysmic variables in the second year of the Zwicky Transient Facility. Astron. J. 162, 94 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Polzin, A. et al. The luminosity phase space of galactic and extragalactic X-ray transients out to intermediate redshifts. Preprint at https://arxiv.org/abs/2211.01232 (2023).

  • Coppejans, D. L. & Knigge, C. The case for jets in cataclysmic variables. New Astron. Rev. 89, 101540 (2020).

    Article 

    Google Scholar 

  • Morales-Rueda, L. & Marsh, T. R. Spectral atlas of dwarf novae in outburst. Mon. Not. R. Astron. Soc. 332, 814–826 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Han, Z. et al. Spectroscopic properties of the dwarf nova-type cataclysmic variables observed by LAMOST. Publ. Astron. Soc. Jpn. 72, 76 (2020).

    Article 
    ADS 

    Google Scholar 

  • Fertig, D., Mukai, K., Nelson, T. & Cannizzo, J. K. The fall and the rise of X-rays from dwarf novae in outburst: RXTE observations of VW Hydri and WW Ceti. Publ. Astron. Soc. Pac. 123, 1054 (2011).

    Article 
    ADS 

    Google Scholar 

  • Bruch, A. A comparative study of the strength of flickering in cataclysmic variables. Mon. Not. R. Astron. Soc. 503, 953–971 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ilbert, O. et al. in Panoramic Views of Galaxy Formation and Evolution ASP Conference Series Vol. 399 169 (Astronomical Society of the Pacific, 2008).

  • Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article 
    ADS 

    Google Scholar 

  • Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article 
    ADS 

    Google Scholar 

  • Tsvetkova, A. et al. The Konus–Wind Catalog of Gamma-Ray Bursts with Known Redshifts. II. Waiting-mode bursts simultaneously detected by Swift/BAT. Astrophys. J. 908, 83 (2021).

    Article 
    ADS 

    Google Scholar 

  • Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 8929054 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ho, A. Y. Q. et al. Gemini, Swift, and VLA observations of AT2022abfc, a radio-loud fast optical transient coincident with a z=0.212 galaxy. Transient Name Server AstroNote 2022-275 (2022).

  • Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton catastrophe. Astrophys. J. 426, 51–59 (1994).

    Article 
    ADS 

    Google Scholar 

  • Longair, M. S. High Energy Astrophysics (Cambridge Univ. Press, 2011).

  • Moffet, A. T. in Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) (Univ. Chicago Press, 1975).

  • Chen, Y. et al. Late-time HST observations of AT 2018cow I: further constraints on the fading prompt emission and thermal properties 50-60 days post-explosion. Astrophys. J. 955, 42 (2023).

  • Gottlieb, O., Tchekhovskoy, A. & Margutti, R. Shocked jets in CCSNe can power the zoo of fast blue optical transients. Mon. Not. R. Astron. Soc. 513, 3810–3817 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Margalit, B. & Quataert, E. Thermal electrons in mildly relativistic synchrotron blast waves. Astrophys. J. Lett. 923, L14 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wright, A. H. et al. Galaxy and mass assembly: accurate panchromatic photometry from optical priors using LAMBDAR. Mon. Not. R. Astron. Soc. 460, 765–801 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486 (2009).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W. & Morton, T. D. Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophys. J. 795, 64 (2014).

    Article 
    ADS 

    Google Scholar 

  • Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    Article 
    ADS 

    Google Scholar 

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article 
    ADS 

    Google Scholar 

  • Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763 (2003).

    Article 
    ADS 

    Google Scholar 

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682 (2000).

    Article 
    ADS 

    Google Scholar 

  • Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012).

    Article 
    ADS 

    Google Scholar 

  • Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Woosley, S. E. & Heger, A. Long gamma-ray transients from collapsars. Astrophys. J. 752, 32 (2012).

    Article 
    ADS 

    Google Scholar 

  • Kashiyama, K. & Quataert, E. Fast luminous blue transients from newborn black holes. Mon. Not. R. Astron. Soc. 451, 2656–2662 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).

    Article 
    ADS 

    Google Scholar 

  • Lyman, J. D. et al. Studying the environment of AT 2018cow with MUSE. Mon. Not. R. Astron. Soc. 495, 992–999 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maund, J. R. et al. A flash of polarized optical light points to an aspherical ‘cow’. Mon. Not. R. Astron. Soc. 521, 3323–3332 (2023).

    Article 
    ADS 

    Google Scholar 

  • Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature 455, 183–188 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophys. J. 720, 1513 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nesci, R. et al. Multiwavelength flare observations of the blazar S5 1803+784. Mon. Not. R. Astron. Soc. 502, 6177–6187 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Villar, V. A., Berger, E., Metzger, B. D. & Guillochon, J. Theoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space. Astrophys. J. 849, 70 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    Article 
    ADS 

    Google Scholar 

  • Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andreoni, I. et al. A very luminous jet from the disruption of a star by a massive black hole. Nature 612, 430–434 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • D’Elia, V. et al. GRB 171205A/SN 2017iuk: a local low-luminosity gamma-ray burst. Astron. Astrophys. 619, A66 (2018).

    Article 

    Google Scholar 

  • Ho, A. Y. Q. et al. SN 2020bvc: a broad-line type Ic supernova with a double-peaked optical light curve and a luminous X-ray and radio counterpart. Astrophys. J. 902, 86 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zauderer, B. A. et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 476, 425–428 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sheth, K. et al. Millimeter observations of GRB 030329: continued evidence for a two-component jet. Astrophys. J. Lett. 595, L33 (2003).

    Article 
    ADS 

    Google Scholar 

  • Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    Article 
    ADS 

    Google Scholar 

  • Laskar, T. et al. First ALMA light curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).

    Article 
    ADS 

    Google Scholar 

  • Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GRB Coordinates Network, Circular Service, No. 22252, #1 (2017).

  • Weiler, K. W. et al. Long-term radio monitoring of SN 1993J. Astrophys. J. 671, 1959 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Soderberg, A. M. et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 463, 513–515 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Horesh, A. et al. An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).

    Article 
    ADS 

    Google Scholar 

  • Corsi, A. et al. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment. Astrophys. J. 782, 42 (2014).

    Article 
    ADS 

    Google Scholar 

  • Maeda, K. et al. The final months of massive star evolution from the circumstellar environment around SN Ic 2020oi. Astrophys. J. 918, 34 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mangano, V., Burrows, D. N., Sbarufatti, B. & Cannizzo, J. K. The definitive X-ray light curve of Swift J164449.3+573451. Astrophys. J. 817, 103 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kouveliotou, C. et al. Chandra observations of the X-ray environs of SN 1998bw/GRB 980425. Astrophys. J. 608, 872 (2004).

    Article 
    ADS 

    Google Scholar 

  • Tiengo, A., Mereghetti, S., Ghisellini, G., Tavecchio, F. & Ghirlanda, G. Late evolution of the X-ray afterglow of GRB 030329. Astron. Astrophys. 423, 861–865 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & Frail, D. A. The radio and X-ray luminous SN 2003bg and the circumstellar density variations around radio supernovae. Astrophys. J. 651, 1005 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Margutti, R. et al. The signature of the central engine in the weakest relativistic explosions: GRB 100316D. Astrophys. J. 778, 18 (2013).

    Article 
    ADS 

    Google Scholar 

  • Dwarkadas, V. V. & Gruszko, J. What are published X-ray light curves telling us about young supernova expansion?. Mon. Not. R. Astron. Soc. 419, 1515–1524 (2012).

    Article 
    ADS 

    Google Scholar 

  • Mucciarelli, P., Zampieri, L., Treves, A., Turolla, R. & Falomo, R. X-ray and optical variability of the ultraluminous X-ray source NGC 1313 X-2. Astrophys. J. 658, 999 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kasliwal, M. M. et al. GRB 070610: a curious galactic transient. Astrophys. J. 678, 1127 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stefanescu, A. et al. Very fast optical flaring from a possible new Galactic magnetar. Nature 455, 503–505 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Castro-Tirado, A. J. et al. Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars. Nature 455, 506–509 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Svinkin, D. et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 589, 211–213 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frederiks, D. et al. Giant flare in SGR 1806-20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hankins, T. H., Kern, J. S., Weatherall, J. C. & Eilek, J. A. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature 422, 141–143 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fender, R. P., Pooley, G. G., Brocksopp, C. & Newell, S. J. Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 290, L65–L69 (1997).

    Article 
    ADS 

    Google Scholar 

  • van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).

    Article 
    ADS 

    Google Scholar 

  • Payne, A. V. et al. Chandra, HST/STIS, NICER, Swift, and TESS detail the flare evolution of the repeating nuclear transient ASASSN-14ko. Astrophys. J. 951, 134 (2023).

    Article 
    ADS 

    Google Scholar 

  • Marrone, D. P. et al. An X-ray, infrared, and submillimeter flare of Sagittarius A*. Astrophys. J. 682, 373 (2008).

    Article 
    ADS 

    Google Scholar 

  • Abramowski, A. et al. The 2010 very high energy γ-ray flare and 10 years of multi-wavelength observations of M 87. Astrophys. J. 746, 151 (2012).

    Article 
    ADS 

    Google Scholar 

  • Miniutti, G. et al. Repeating tidal disruptions in GSN 069: long-term evolution and constraints on quasi-periodic eruptions’ models. Astron. Astrophys. 670, A93 (2023).

    Article 

    Google Scholar 

  • van Dyk, S. D., Weiler, K. W., Sramek, R. A. & Panagia, N. SN 1988Z: the most distant radio supernova. Astrophys. J. Lett. 419, L69 (1993).

    Article 
    ADS 

    Google Scholar 

  • Weiler, K. W., Sramek, R. A., Panagia, N., van der Hulst, J. M. & Salvati, M. Radio supernovae. Astrophys. J. 301, 790–812 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Soderberg, A. M. et al. The radio and X-ray-luminous type Ibc supernova 2003L. Astrophys. J. 621, 908 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Salas, P., Bauer, F. E., Stockdale, C. & Prieto, J. L. SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined Type Ic supernovae. Mon. Not. R. Astron. Soc. 428, 1207–1217 (2013).

    Article 
    ADS 

    Google Scholar 

  • Alexander, K. D., Berger, E., Guillochon, J., Zauderer, B. A. & Williams, P. K. G. Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. Astrophys. J. Lett. 819, L25 (2016).

    Article 
    ADS 

    Google Scholar 

  • Laskar, T., Coppejans, D. L., Margutti, R. & Alexander, K. D. GRB 171205A: VLA detection. GRB Coordinates Network, Circular Service, No. 22216, #1 (2017).

  • Dong, D. Z. et al. A transient radio source consistent with a merger-triggered core collapse supernova. Science 373, 1125–1129 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mooley, K. P. et al. Late-time evolution and modeling of the off-axis gamma-ray burst candidate FIRST J141918.9+394036. Astrophys. J. 924, 16 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Graham, M. J. et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    Article 
    ADS 

    Google Scholar 

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).

    Article 
    ADS 

    Google Scholar 

  • Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article 
    ADS 

    Google Scholar 

  • Patterson, M. T. et al. The Zwicky Transient Facility alert distribution system. Publ. Astron. Soc. Pac. 131, 018001 (2019).

    Article 
    ADS 

    Google Scholar 

  • Duev, D. A. et al. Real-bogus classification for the Zwicky Transient Facility using deep learning. Mon. Not. R. Astron. Soc. 489, 3582–3590 (2019).

    Article 
    ADS 

    Google Scholar 

  • Tachibana, Y. & Miller, A. A. A morphological classification model to identify unresolved PanSTARRS1 sources: application in the ZTF real-time pipeline. Publ. Astron. Soc. Pac. 130, 128001 (2018).

    Article 
    ADS 

    Google Scholar 

  • Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99 (2012).

    Article 
    ADS 

    Google Scholar 

  • Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article 
    ADS 

    Google Scholar 

  • Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    Article 
    ADS 

    Google Scholar 

  • Shingles, L. et al. Release of the ATLAS Forced Photometry server for public use. Transient Name Server AstroNote 2021-7 (2021).

  • Steele, I. A. et al. The Liverpool Telescope: performance and first results. Proc. SPIE 5489, 679 (2004).

    Article 
    ADS 

    Google Scholar 

  • Dhillon, V. S. et al. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope. Mon. Not. R. Astron. Soc. 444, 4009–4021 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kumar, H. et al. India’s first robotic eye for time-domain astrophysics: the GROWTH-India telescope. Astron. J. 164, 90 (2022).

    Article 
    ADS 

    Google Scholar 

  • Dressler, A. et al. IMACS: the Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).

    Article 
    ADS 

    Google Scholar 

  • Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).

    Article 
    ADS 

    Google Scholar 

  • Dhillon, V. S. et al. ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. Mon. Not. R. Astron. Soc. 378, 825–840 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Article 

    Google Scholar 

  • Buzzoni, B. et al. The ESO Faint Object Spectrograph and Camera (EFOSC). ESO Messenger 38, 9–13 (1984).

    ADS 

    Google Scholar 

  • Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ofek, E. O. et al. The Large Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ben-Ami, S. et al. The Large Array Survey Telescope—science goals. Publ. Astron. Soc. Pac. 135, 085002 (2023).

  • Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source Code Library, record ascl:1407.005 (2014).

  • Ofek, E. O. A code for robust astrometric solution of astronomical images. Publ. Astron. Soc. Pac. 131, 054504 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article 

    Google Scholar 

  • Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article 
    ADS 

    Google Scholar 

  • Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    Article 
    ADS 

    Google Scholar 

  • Nayana, A. J. et al. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also known as HESS J1731-347. Mon. Not. R. Astron. Soc. 467, 155–163 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Greisen, E. W. in Information Handling in Astronomy – Historical Vistas (ed. Heck, A.) 109–125 (Springer, 2003).

  • Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. Astrophys. J. Lett. 739, L1 (2011).

    Article 
    ADS 

    Google Scholar 

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI ASP Conference Series Vol. 376 127 (Astronomical Society of the Pacific, 2007).

  • Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library, record ascl:1305.010 (2013).

  • Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article 
    ADS 

    Google Scholar 

  • Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article 
    ADS 

    Google Scholar 

  • Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article 
    ADS 

    Google Scholar 

  • Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article 
    ADS 

    Google Scholar 

  • Fruscione, A. et al. CIAO: Chandra’s data analysis system. Proc. SPIE 6270, 62701V (2006).

    Article 

    Google Scholar 

  • GROWTH India Telescope; https://sites.google.com/view/growthindia/.

  • Taggart, K. & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 503, 3931–3952 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *