Strange IndiaStrange India


  • Angell, C. A., Oguni, M. & Sichina, W. J. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982).

    Article 
    CAS 

    Google Scholar 

  • Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stöckel, P., Weidinger, I. M., Baumgartel, H. & Leisner, T. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A 109, 2540–2546 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Stan, C. A. et al. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9, 2293–2305 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hagen, D. E., Anderson, R. J. & Kassner, J. L. Homogeneous condensation–freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci. 38, 1236–1243 (1981).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0469%281981%29038%3C1236%3AHCNRMF%3E2.0.CO%3B2″ aria-label=”Article reference 5″ data-doi=”10.1175/1520-0469(1981)038<1236:HCNRMF>2.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Wildeman, S., Sterl, S., Sun, C. & Lohse, D. Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett. 118, 084101 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Lauber, A., Kiselev, A., Pander, T., Handmann, P. & Leisner, T. Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci. 75, 2815–2826 (2018).

    Article 
    ADS 

    Google Scholar 

  • Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttersack, T. & Bauerecker, S. Critical radius of supercooled water droplets: on the transition toward dendritic freezing. J. Phys. Chem. B 120, 504–512 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esmaeildoost, N. et al. Heterogeneous ice growth in micron-sized water droplets due to spontaneous freezing. Crystals 12, 65 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, 2010).

  • Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Korolev, A. & Leisner, T. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 20, 11767–11797 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Field, P. et al. Secondary ice production: current state of the science and recommendations for the future. Meteorol. Monogr. 58, 7.1–7.20 (2017).

    Google Scholar 

  • Kleinheins, J., Kiselev, A., Keinert, A., Kind, M. & Leisner, T. Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles. J. Atmos. Sci. 78, 1703–1713 (2021).

    Google Scholar 

  • Korolev, A. et al. Observation of secondary ice production in clouds at low temperatures. Atmos. Chem. Phys. 22, 13103–13113 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maruyama, M. et al. X-ray analysis of the structure of premelted layers at ice interfaces. Jpn. J. Appl. Phys. 39, 6696–6699 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laksmono, H. et al. Anomalous behavior of the homogeneous ice nucleation rate in “no-man’s land”. J. Phys. Chem. Lett. 6, 2826–2832 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttersack, T., Weiss, V. C. & Bauerecker, S. Hypercooling temperature of water is about 100 K higher than calculated before. J. Phys. Chem. Lett. 9, 471–475 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keinert, A., Spannagel, D., Leisner, T. & Kiselev, A. Secondary ice production upon freezing of freely falling drizzle droplets. J. Atmos. Sci. 77, 2959–2967 (2020).

    Article 
    ADS 

    Google Scholar 

  • Thomson, E. S., Hansen-Goos, H., Wettlaufer, J. S. & Wilen, L. A. Grain boundary melting in ice. J. Chem. Phys. 138, 124707 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Niozu, A. et al. Crystallization kinetics of atomic crystals revealed by a single-shot and single-particle X-ray diffraction experiment. Proc. Natl Acad. Sci. USA 118, e2111747118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar 

  • Hondoh, T. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih. Philos. Mag. 95, 3590–3620 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haji-Akbari, A. & Debenedetti, P. G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc. Natl Acad. Sci. USA 112, 10582–10588 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Murray, B. J. & Bertram, A. K. Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186–192 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, M. N. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hart, P. et al. The CSPAD megapixel x-ray camera at LCLS. Proc. SPIE 8504, 51–61 (2012).

    Google Scholar 

  • Stan, C. A. et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12, 966–971 (2016).

    Article 
    CAS 

    Google Scholar 

  • Brownscombe, J. & Thorndike, N. Freezing and shattering of water droplets in free fall. Nature 220, 687–689 (1968).

    Article 
    ADS 

    Google Scholar 

  • Stan, C. A. et al. Rocket drops: the self-propulsion of supercooled freezing drops. Phys. Rev. Fluids 8, L021601 (2023).

    Article 
    ADS 

    Google Scholar 

  • Kalita, A. X-ray laser diffraction and optical image data from freezing supercooled water drops. CXIDB ID 217. CXIDB https://doi.org/10.11577/1973475 (2023).

  • Stan, C. A., Marte, S., Kalita, A. & Mrozek-McCourt, M. Separation of sharp and diffuse diffraction patterns from X-ray laser scattering of freezing water drops. Version 1.0. Zenodo https://doi.org/10.5281/zenodo.7908740 (2023).

  • Yefanov, O. et al. Accurate determination of segmented X-ray detector geometry. Opt. Express 23, 28459–28470 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Treacy, M., Newsam, J. & Deem, M. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Hudait, A., Qiu, S. W., Lupi, L. & Molinero, V. Free energy contributions and structural characterization of stacking disordered ices. Phys. Chem. Chem. Phys. 18, 9544–9553 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amaya, A. J. et al. How cubic can ice be? J. Phys. Chem. Lett. 8, 3216–3222 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stan, C. A., Kalita, A. & Mrozek-McCourt, M. Modeling of supercooling, solidification, and freezing stages of water drops. Version 1.0. Zenodo https://doi.org/10.5281/zenodo.7908648 (2023).

  • Smith, J. D., Cappa, C. D., Drisdell, W. S., Cohen, R. C. & Saykally, R. J. Raman thermometry measurements of free evaporation from liquid water droplets. J. Am. Chem. Soc. 128, 12892–12898 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Goy, C. et al. Shrinking of rapidly evaporating water microdroplets reveals their extreme supercooling. Phys. Rev. Lett. 120, 015501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ando, K., Arakawa, M. & Terasaki, A. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum. Phys. Chem. Chem. Phys. 20, 28435–28444 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water down to -37.5 °C. Nature 405, 440–442 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Amaya, A. J. & Wyslouzil, B. E. Ice nucleation rates near ~225 K. J. Chem. Phys. 148, 084501 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zobrist, B., Koop, T., Luo, B., Marcolli, C. & Peter, T. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149–2155 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ickes, L., Welti, A., Hoose, C. & Lohmann, U. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys. 17, 5514–5537 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koop, T. & Murray, B. J. A physically constrained classical description of the homogeneous nucleation of ice in water. J. Chem. Phys. 145, 211915 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Pruppacher, H. R. Interpretation of experimentally determined growth rates of ice crystals in supercooled water. J. Chem. Phys. 47, 1807–1813 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hooke, R. & Jeeves, T. A. “Direct search” solution of numerical and statistical problems. J. ACM 8, 212–229 (1961).

    Article 
    MATH 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *