Angell, C. A., Oguni, M. & Sichina, W. J. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982).
Google Scholar
Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).
Google Scholar
Stöckel, P., Weidinger, I. M., Baumgartel, H. & Leisner, T. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A 109, 2540–2546 (2005).
Google Scholar
Stan, C. A. et al. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9, 2293–2305 (2009).
Google Scholar
Hagen, D. E., Anderson, R. J. & Kassner, J. L. Homogeneous condensation–freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci. 38, 1236–1243 (1981).
Google Scholar
Wildeman, S., Sterl, S., Sun, C. & Lohse, D. Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett. 118, 084101 (2017).
Google Scholar
Lauber, A., Kiselev, A., Pander, T., Handmann, P. & Leisner, T. Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci. 75, 2815–2826 (2018).
Google Scholar
Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).
Google Scholar
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).
Google Scholar
Buttersack, T. & Bauerecker, S. Critical radius of supercooled water droplets: on the transition toward dendritic freezing. J. Phys. Chem. B 120, 504–512 (2016).
Google Scholar
Esmaeildoost, N. et al. Heterogeneous ice growth in micron-sized water droplets due to spontaneous freezing. Crystals 12, 65 (2022).
Google Scholar
Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, 2010).
Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).
Google Scholar
Korolev, A. & Leisner, T. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 20, 11767–11797 (2020).
Google Scholar
Field, P. et al. Secondary ice production: current state of the science and recommendations for the future. Meteorol. Monogr. 58, 7.1–7.20 (2017).
Kleinheins, J., Kiselev, A., Keinert, A., Kind, M. & Leisner, T. Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles. J. Atmos. Sci. 78, 1703–1713 (2021).
Korolev, A. et al. Observation of secondary ice production in clouds at low temperatures. Atmos. Chem. Phys. 22, 13103–13113 (2022).
Google Scholar
Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).
Google Scholar
Maruyama, M. et al. X-ray analysis of the structure of premelted layers at ice interfaces. Jpn. J. Appl. Phys. 39, 6696–6699 (2000).
Google Scholar
Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).
Google Scholar
Laksmono, H. et al. Anomalous behavior of the homogeneous ice nucleation rate in “no-man’s land”. J. Phys. Chem. Lett. 6, 2826–2832 (2015).
Google Scholar
Buttersack, T., Weiss, V. C. & Bauerecker, S. Hypercooling temperature of water is about 100 K higher than calculated before. J. Phys. Chem. Lett. 9, 471–475 (2018).
Google Scholar
Keinert, A., Spannagel, D., Leisner, T. & Kiselev, A. Secondary ice production upon freezing of freely falling drizzle droplets. J. Atmos. Sci. 77, 2959–2967 (2020).
Google Scholar
Thomson, E. S., Hansen-Goos, H., Wettlaufer, J. S. & Wilen, L. A. Grain boundary melting in ice. J. Chem. Phys. 138, 124707 (2013).
Google Scholar
Niozu, A. et al. Crystallization kinetics of atomic crystals revealed by a single-shot and single-particle X-ray diffraction experiment. Proc. Natl Acad. Sci. USA 118, e2111747118 (2021).
Google Scholar
Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).
Google Scholar
Hondoh, T. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih. Philos. Mag. 95, 3590–3620 (2015).
Google Scholar
Haji-Akbari, A. & Debenedetti, P. G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc. Natl Acad. Sci. USA 112, 10582–10588 (2015).
Google Scholar
Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).
Google Scholar
Murray, B. J. & Bertram, A. K. Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186–192 (2006).
Google Scholar
Liang, M. N. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).
Google Scholar
Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).
Google Scholar
Hart, P. et al. The CSPAD megapixel x-ray camera at LCLS. Proc. SPIE 8504, 51–61 (2012).
Stan, C. A. et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12, 966–971 (2016).
Google Scholar
Brownscombe, J. & Thorndike, N. Freezing and shattering of water droplets in free fall. Nature 220, 687–689 (1968).
Google Scholar
Stan, C. A. et al. Rocket drops: the self-propulsion of supercooled freezing drops. Phys. Rev. Fluids 8, L021601 (2023).
Google Scholar
Kalita, A. X-ray laser diffraction and optical image data from freezing supercooled water drops. CXIDB ID 217. CXIDB https://doi.org/10.11577/1973475 (2023).
Stan, C. A., Marte, S., Kalita, A. & Mrozek-McCourt, M. Separation of sharp and diffuse diffraction patterns from X-ray laser scattering of freezing water drops. Version 1.0. Zenodo https://doi.org/10.5281/zenodo.7908740 (2023).
Yefanov, O. et al. Accurate determination of segmented X-ray detector geometry. Opt. Express 23, 28459–28470 (2015).
Google Scholar
Treacy, M., Newsam, J. & Deem, M. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).
Google Scholar
Hudait, A., Qiu, S. W., Lupi, L. & Molinero, V. Free energy contributions and structural characterization of stacking disordered ices. Phys. Chem. Chem. Phys. 18, 9544–9553 (2016).
Google Scholar
Amaya, A. J. et al. How cubic can ice be? J. Phys. Chem. Lett. 8, 3216–3222 (2017).
Google Scholar
Stan, C. A., Kalita, A. & Mrozek-McCourt, M. Modeling of supercooling, solidification, and freezing stages of water drops. Version 1.0. Zenodo https://doi.org/10.5281/zenodo.7908648 (2023).
Smith, J. D., Cappa, C. D., Drisdell, W. S., Cohen, R. C. & Saykally, R. J. Raman thermometry measurements of free evaporation from liquid water droplets. J. Am. Chem. Soc. 128, 12892–12898 (2006).
Google Scholar
Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).
Google Scholar
Goy, C. et al. Shrinking of rapidly evaporating water microdroplets reveals their extreme supercooling. Phys. Rev. Lett. 120, 015501 (2018).
Google Scholar
Ando, K., Arakawa, M. & Terasaki, A. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum. Phys. Chem. Chem. Phys. 20, 28435–28444 (2018).
Google Scholar
Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water down to -37.5 °C. Nature 405, 440–442 (2000).
Google Scholar
Amaya, A. J. & Wyslouzil, B. E. Ice nucleation rates near ~225 K. J. Chem. Phys. 148, 084501 (2018).
Google Scholar
Zobrist, B., Koop, T., Luo, B., Marcolli, C. & Peter, T. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149–2155 (2007).
Google Scholar
Ickes, L., Welti, A., Hoose, C. & Lohmann, U. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys. 17, 5514–5537 (2015).
Google Scholar
Koop, T. & Murray, B. J. A physically constrained classical description of the homogeneous nucleation of ice in water. J. Chem. Phys. 145, 211915 (2016).
Google Scholar
Pruppacher, H. R. Interpretation of experimentally determined growth rates of ice crystals in supercooled water. J. Chem. Phys. 47, 1807–1813 (1967).
Google Scholar
Hooke, R. & Jeeves, T. A. “Direct search” solution of numerical and statistical problems. J. ACM 8, 212–229 (1961).
Google Scholar