Strange IndiaStrange India


  • White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Luan, S. & Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37, 311–340 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. & Luan, S. Calcium homeostasis and signaling in plant immunity. Curr. Opin. Plant Biol. 77, 102485 (2023).

    PubMed 

    Google Scholar 

  • Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Thor, K. et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569–573 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bi, G. et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jacob, P. et al. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420–425 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjornson, M., Pimprikar, P., Nürnberger, T. & Zipfel, C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7, 579–586 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ast, C. et al. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat. Commun. 8, 431 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bose, J., Pottosin, I. I., Shabala, S. S., Palmgren, M. G. & Shabala, S. Calcium efflux systems in stress signaling and adaptation in plants. Front. Plant Sci. 2, 85 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, N.-H. et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol. 138, 2048–2060 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boursiac, Y. et al. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol. 154, 1158–1171 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilleary, R. et al. Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 117, 18849–18857 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahmati Ishka, M. et al. Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. Plant Physiol. 185, 1966–1985 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z., Harper, J. F., Weigand, C. & Hua, J. Resting cytosol Ca2+ level maintained by Ca2+ pumps affects environmental responses in Arabidopsis. Plant Physiol. 191, 2534–2550 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conn, S. J. et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23, 240–257 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pittman, J. K. & Hirschi, K. D. Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol. 127, 1020–1029 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waight, A. B. et al. Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499, 107–110 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S.-L. et al. Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis. Proc. Natl Acad. Sci. USA 114, E1536–E1543 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Obayashi, T., Hibara, H., Kagaya, Y., Aoki, Y. & Kinoshita, K. ATTED-II v11: a plant gene coexpression database using a sample balancing technique by subagging of principal components. Plant Cell Physiol. 63, 869–881 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, R. J. et al. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 112, 3134–3139 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, R.-J., Wang, C., Li, K. & Luan, S. The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci. 25, 604–617 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, J., Ishitani, M., Halfter, U., Kim, C. S. & Zhu, J. K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl Acad. Sci. USA 97, 3730–3734 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koster, P., DeFalco, T. A. & Zipfel, C. Ca2+ signals in plant immunity. EMBO J. 41, e110741 (2022).

  • Yu, X. et al. A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity. Cell 186, 2329–2344 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, C. et al. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol. 230, 1078–1094 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Grant, M. et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441–450 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J. & Scheel, D. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J. 68, 100–113 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ranf, S. et al. Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1. BMC Plant Biol. 14, 374 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F. et al. The activated plant NRC4 immune receptor forms a hexameric resistosome. Preprint at bioRxiv https://doi.org/10.1101/2023.12.18.571367 (2023).

  • Ngou, B. P. M., Ahn, H.-K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, D. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl Acad. Sci. USA 107, 496–501 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, X. et al. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 581, 199–203 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol. 173, 1342–1354 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. & Li, X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50, 29–36 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ngou, B. P. M., Jones, J. D. G. & Ding, P. Plant immune networks. Trends Plant Sci. 27, 255–273 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839–863 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fu, Z. Q. et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, Y. et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454–1467 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Cui, H. et al. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 213, 1802–1817 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • He, Z., Webster, S. & He, S. Y. Growth–defense trade-offs in plants. Curr. Biol. 32, R634–R639 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Catalá, R. et al. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15, 2940–2951 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J., Barkla, B. J., Marshall, J., Pittman, J. K. & Hirschi, K. D. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227, 659–669 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. The vacuolar H+/Ca transporter CAX1 participates in submergence and anoxia stress responses. Plant Physiol. 190, 2617–2636 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, I., Harper, J. F., Liang, F. & Sze, H. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain. Plant Physiol. 122, 157–168 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D.-L. et al. Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 175, 424–437 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, T. et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18, 74–80 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, H., Yan, J., Du, X. & Hua, J. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. J. Exp. Bot. 69, 2693–2703 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capieaux, E., Vignais, M. L., Sentenac, A. & Goffeau, A. The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J. Biol. Chem. 264, 7437–7446 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Cunningham, K. W. & Fink, G. R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2226–2237 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *