Strange IndiaStrange India


  • Sachdev, S. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys. 75, 913–932 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    ADS 
    CAS 

    Google Scholar 

  • Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2. J. Phys. Chem. Solids 53, 1259–1263 (1992).

    ADS 
    CAS 

    Google Scholar 

  • Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Phil. Mag. B 39, 229–244 (1979).

    ADS 
    CAS 

    Google Scholar 

  • Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ribak, A. et al. Gapless excitations in the ground state of 1T-TaS2. Phys. Rev. B 96, 195131 (2017).

    ADS 

    Google Scholar 

  • Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    Google Scholar 

  • Mañas-Valero, S., Huddart, B. M., Lancaster, T., Coronado, E. & Pratt, F. L. Quantum phases and spin liquid properties of 1T-TaS2. npj Quantum Mater. 6, 69 (2021).

    ADS 

    Google Scholar 

  • Benedičič, I. et al. Superconductivity emerging upon Se doping of the quantum spin liquid 1T-TaS2. Phys. Rev. B 102, 054401 (2020).

    ADS 

    Google Scholar 

  • Murayama, H. et al. Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS2. Phys. Rev. Res. 2, 013099 (2020).

    CAS 

    Google Scholar 

  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

    CAS 

    Google Scholar 

  • Xu, G. et al. Holes in a quantum spin liquid. Science 289, 419–422 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wessel, S., Normand, B., Sigrist, M. & Haas, S. Order by disorder from nonmagnetic impurities in a two-dimensional quantum spin liquid. Phys. Rev. Lett. 86, 1086–1089 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).

    CAS 

    Google Scholar 

  • Hu, W.-J., Gong, S.-S. & Sheng, D. N. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice. Phys. Rev. B 94, 75131 (2016).

    ADS 

    Google Scholar 

  • Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Ng, T. K. & Varma, C. M. Spontaneous vortex phase discovered? Phys. Rev. Lett. 78, 330–333 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Paulsen, C., Hykel, D. J., Hasselbach, K. & Aoki, D. Observation of the Meissner–Ochsenfeld effect and the absence of the meissner state in UCoGe. Phys. Rev. Lett. 109, 237001 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stolyarov, V. S. et al. Domain Meissner state and spontaneous vortex–antivortex generation in the ferromagnetic superconductor EuFe2(As0.79P0.21)2. Sci. Adv. 4, eaat1061 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonin, E. B. & Felner, I. Spontaneous vortex phase in a superconducting weak ferromagnet. Phys. Rev. B 57, R14000–R14003 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Jiao, W.-H., Tao, Q., Ren, Z., Liu, Y. & Cao, G.-H. Evidence of spontaneous vortex ground state in an iron-based ferromagnetic superconductor. npj Quantum Mater. 2, 50 (2017).

    ADS 

    Google Scholar 

  • Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    ADS 

    Google Scholar 

  • Bojesen, T. A., Babaev, E. & Sudbø, A. Phase transitions and anomalous normal state in superconductors with broken time-reversal symmetry. Phys. Rev. B 89, 104509 (2014).

    ADS 

    Google Scholar 

  • Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Knigavko, A. & Rosenstein, B. Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors. Phys. Rev. B 58, 9354–9364 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Nayak, A. K. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021).

    CAS 

    Google Scholar 

  • Grinenko, V. et al. State with spontaneously broken time-reversal symmetry above the superconducting phase transition. Nat. Phys. 17, 1254–1259 (2021).

    CAS 

    Google Scholar 

  • Fauqué, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Sonier, J. E. et al. Anomalous weak magnetism in superconducting YBa2Cu3O6+x. Science 292, 1692–1695 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa2Cu3Oy. Sci. Adv. 4, eaao5235 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

    ADS 

    Google Scholar 

  • Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • König, E. J., Randeria, M. T. & Jäck, B. Tunneling spectroscopy of quantum spin liquids. Phys. Rev. Lett. 125, 267206 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    CAS 

    Google Scholar 

  • Gardner, B. W. et al. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 72, 2361–2364 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 53704 (2008).

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *