Ma, Q., Kumar, R. K., Xu, S.-Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).
Google Scholar
Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).
Google Scholar
Pettine, J. et al. Ultrafast terahertz emission from emerging symmetry-broken materials. Light Sci. Appl. 12, 133 (2023).
Google Scholar
Takasan, K., Morimoto, T., Orenstein, J. & Moore, J. E. Current-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetals. Phys. Rev. B 104, L161202 (2021).
Google Scholar
Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).
Google Scholar
Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).
Google Scholar
Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).
Google Scholar
Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).
Google Scholar
Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).
Google Scholar
Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).
Google Scholar
McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).
Google Scholar
Wang, Y. X. et al. Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals. Nat. Phys. 19, 507–514 (2023).
Google Scholar
Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).
Google Scholar
Qiu, H. S. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).
Google Scholar
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
Google Scholar
Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).
Google Scholar
Petrov, N. V., Sokolenko, B., Kulya, M. S., Gorodetsky, A. & Chernykh, A. V. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light Adv. Manuf. 3, 640–652 (2022).
Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).
Google Scholar
Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).
Google Scholar
Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).
Google Scholar
Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).
Google Scholar
Pettine, J. & Nesbitt, D. J. Emerging methods for controlling hot carrier excitation and emission distributions in nanoplasmonic systems. J. Phys. Chem. C 126, 14767–14780 (2022).
Google Scholar
Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013).
Google Scholar
Lehr, M. et al. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Lett. 17, 6606–6612 (2017).
Google Scholar
Pettine, J., Choo, P., Medeghini, F., Odom, T. W. & Nesbitt, D. J. Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat. Commun. 11, 1367 (2020).
Google Scholar
Wei, J. X. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).
Google Scholar
Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).
Google Scholar
Li, L. F. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15, 743–749 (2020).
Google Scholar
Liao, P. F. & Wokaun, A. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 76, 751–752 (1982).
Google Scholar
Buckley, D., Yang, Y., Yang-Keathley, Y., Berggren, K. K. & Keathley, P. D. Nanoantenna design for enhanced carrier–envelope-phase sensitivity. J. Opt. Soc. Am. B 38, C11–C21 (2021).
Google Scholar
Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).
Google Scholar
Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).
Google Scholar
Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).
Google Scholar
Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).
Google Scholar
Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).
Google Scholar
Liu, C. H. et al. Ultrafast lateral photo-Dember effect in graphene induced by nonequilibrium hot carrier dynamics. Nano Lett. 15, 4234–4239 (2015).
Google Scholar
Yoshioka, K. et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photon. 16, 718–723 (2022).
Google Scholar
Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene–metal interfaces. J. Phys. Condens. Matter 27, 164207 (2015).
Google Scholar
Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).
Google Scholar
Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).
Google Scholar
Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).
Google Scholar
Shautsova, V. et al. Plasmon induced thermoelectric effect in graphene. Nat. Commun. 9, 5190 (2018).
Google Scholar
Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).
Google Scholar
Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).
Google Scholar
Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).
Google Scholar
Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).
Google Scholar
Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).
Google Scholar
Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195–1200 (2021).
Google Scholar
Taghinejad, M. et al. Determining hot-carrier transport dynamics from terahertz emission. Science 382, 299–305 (2023).
Google Scholar
Jana, K. et al. Reconfigurable electronic circuits for magnetic fields controlled by structured light. Nat. Photon. 15, 622–627 (2021).
Google Scholar
Mitoma, N., Nouchi, R. & Tanigaki, K. Photo-oxidation of graphene in the presence of water. J. Phys. Chem. C 117, 1453–1456 (2013).
Google Scholar
Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).
Google Scholar
Kohlhaas, R. B. et al. Ultrabroadband terahertz time-domain spectroscopy using III–V photoconductive membranes on silicon. Opt. Express 30, 23896–23908 (2022).
Google Scholar
Song, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).
Google Scholar
Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).
Google Scholar
Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).
Google Scholar
Chang, Y.-C., Liu, C.-H., Liu, C.-H., Zhong, Z. H. & Norris, T. B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 104, 261909 (2014).
Google Scholar
Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).
Google Scholar
Yan, H. G. et al. Time-resolved Raman spectroscopy of optical phonons in graphite: phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 80, 121403(R) (2009).
Google Scholar
Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).
Google Scholar