Strange IndiaStrange India


  • Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. & Broecker, W. S.) 99–110 (American Geophysical Union, 1985).

  • Sarmiento, J. L., Hughes, T. M., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    Article 
    CAS 

    Google Scholar 

  • Marinov, I. et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22, GB3007 (2008).

    Article 

    Google Scholar 

  • Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2008).

    Article 

    Google Scholar 

  • Honjo, S. in Polar Oceanography (ed Smith, W. O. Jr) 322–353 (Academic, 1990).

  • Meredith, M. P., Stefels, J. & van Leeuwe, M. Marine studies at the western Antarctic Peninsula: priorities, progress and prognosis. Deep Sea Res. Part II 139, 1–8 (2017).

    Article 

    Google Scholar 

  • Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).

    Article 
    CAS 

    Google Scholar 

  • Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).

    Article 
    CAS 

    Google Scholar 

  • Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).

    Article 

    Google Scholar 

  • Stammerjohn, S. & Maksym, T. in Sea Ice 3rd edn (ed. Thomas, D. N.) Ch. 10 (John Wiley & Sons, 2017).

  • Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    Article 

    Google Scholar 

  • Knox, F. & McElroy, M. B. Changes in atmospheric CO2: influence of the marine biota at high latitude. J. Geophys. Res. Atmos. 89, 4629–4637 (1984).

    Article 
    CAS 

    Google Scholar 

  • Siegel, D. A., DeVries, T., Cetinić, I. & Bisson, K. M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15, 329–356 (2022).

  • Long, M. C. et al. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374, 1275–1280 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S. & Sarmiento, J. L. Assessment of export efficiency equations in the Southern Ocean applied to satellite‐based net primary production. J. Geophys. Res. Oceans 123, 2945–2964 (2018).

    Article 

    Google Scholar 

  • Nöthig, E. M. & von Bodungen, B. Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea (Antarctica). Mar. Ecol. Prog. Ser. 56, 281–289 (1989).

  • Palanques, A., Isla, E., Puig, P., Sanchez-Cabeza, J. A. & Masqué, P. Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA project. Deep Sea Res. Part II 49, 903–920 (2002).

    Article 
    CAS 

    Google Scholar 

  • Manno, C. et al. Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat. Commun. 11, 6051 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. Part II 43, 129–156 (1996).

    Article 
    CAS 

    Google Scholar 

  • Conte, M. H., Ralph, N. & Ross, E. H. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep Sea Res. Part II 48, 1471–1505 (2001).

    Article 

    Google Scholar 

  • Wynn-Edwards, C. A. et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).

    Article 

    Google Scholar 

  • Schofield, O. et al. Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep Sea Res. Part I 124, 42–54 (2017).

    Article 
    CAS 

    Google Scholar 

  • Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243–274 (2003).

    Article 

    Google Scholar 

  • Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Chang. 10, 710–711 (2020).

    Article 

    Google Scholar 

  • Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I 56, 727–740 (2009).

    Article 

    Google Scholar 

  • Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    Article 
    CAS 

    Google Scholar 

  • Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonnell, A. M. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).

    Article 

    Google Scholar 

  • Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. Part II 59, 147–158 (2012).

    Article 

    Google Scholar 

  • Gleiber, M. R., Steinberg, D. K. & Ducklow, H. W. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog Ser. 471, 23–36 (2012).

    Article 

    Google Scholar 

  • Lampitt, R. S. & Antia, A. N. Particle flux in deep seas: regional characteristics and temporal variability. Deep Sea Res. Part I 44, 1377–1403 (1997).

    Article 
    CAS 

    Google Scholar 

  • Décima, M. et al. Salp blooms drive strong increases in passive carbon export in the Southern Ocean. Nat. Commun. 14, 425 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pauli, N. C. et al. Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula. Nat. Commun. 12, 7168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iversen, M. H. et al. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res. Part II 138, 116–125 (2017).

    Article 
    CAS 

    Google Scholar 

  • Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I 77, 63–74 (2013).

    Article 

    Google Scholar 

  • Reiss, C. S. in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed. Siegel, V.) 101–144 (Springer, 2016).

  • Siegel, V. Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Mar. Biol. 96, 483–495 (1987).

    Article 

    Google Scholar 

  • Fraser, W. R. & Hofmann, E. E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog Ser. 265, 1–15 (2003).

    Article 

    Google Scholar 

  • Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Part I 101, 54–70 (2015).

    Article 

    Google Scholar 

  • Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Siegel, V. in Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 219–230 (Springer, 1988).

  • Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience. 56, 111–120 (2006).

    Article 

    Google Scholar 

  • Kawaguchi, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 225–246 (Springer, 2016).

  • Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 279–319 (Springer, 2016).

  • Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).

    Article 
    MathSciNet 

    Google Scholar 

  • Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. 60, 1386–1400 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111–127 (2018).

    Article 

    Google Scholar 

  • Fuller, W. A. Introduction to Statistical Time Series 698 (Wiley, 1996).

  • Waters, K. J. & Smith, R. C. Palmer LTER: a sampling grid for the Palmer LTER program. Antarctic J. US 27, 236–239 (1992).

    Google Scholar 

  • Ducklow, H. W. et al. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: a long-term record, 1992–2007. Deep Sea Res. Part II 55, 2118–2131 (2008).

    Article 

    Google Scholar 

  • Knap, A., Michaels, A. F., Close, A., Ducklow, H. W. & Dickson, A. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements (UNESCO, 1994).

  • Karl, D. M., Dore, J. E., Hebel, D. V. & Winn, C. in Marine Particles: Analysis and Characterization (eds Hurd, D. C. & Spencer, D. W.) 71–77 (American Geophysical Union, 1991).

  • Kim, H. & Ducklow, H. W. A decadal (2002–2014) analysis for dynamics of heterotrophic bacteria in an Antarctic coastal ecosystem: variability and physical and biogeochemical forcings. Front. Mar. Sci. 3, 214 (2016).

    Article 

    Google Scholar 

  • Martinson, D. G. & Iannuzzi, R. A. in Antarctic Sea Ice: Physical Processes, Interactions and Variability Vol. 74 (ed. Jeffries, M. O.) 243–271 (American Geophysical Union, 1998).

  • Siegel, V. & Loeb, V. Length and age at maturity of Antarctic krill. Antarctic. Science 6, 479–482 (1994).

    Google Scholar 

  • Reid, K. & Brierley, A. S. The use of predator-derived krill length–frequency distributions to calculate krill target strength. CCAMLR Sci. 8, 155–163 (2001).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *