Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. & Broecker, W. S.) 99–110 (American Geophysical Union, 1985).
Sarmiento, J. L., Hughes, T. M., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).
Google Scholar
Marinov, I. et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22, GB3007 (2008).
Google Scholar
Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2008).
Google Scholar
Honjo, S. in Polar Oceanography (ed Smith, W. O. Jr) 322–353 (Academic, 1990).
Meredith, M. P., Stefels, J. & van Leeuwe, M. Marine studies at the western Antarctic Peninsula: priorities, progress and prognosis. Deep Sea Res. Part II 139, 1–8 (2017).
Google Scholar
Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).
Google Scholar
Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).
Google Scholar
Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
Google Scholar
Stammerjohn, S. & Maksym, T. in Sea Ice 3rd edn (ed. Thomas, D. N.) Ch. 10 (John Wiley & Sons, 2017).
Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).
Google Scholar
Knox, F. & McElroy, M. B. Changes in atmospheric CO2: influence of the marine biota at high latitude. J. Geophys. Res. Atmos. 89, 4629–4637 (1984).
Google Scholar
Siegel, D. A., DeVries, T., Cetinić, I. & Bisson, K. M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15, 329–356 (2022).
Long, M. C. et al. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374, 1275–1280 (2021).
Google Scholar
Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S. & Sarmiento, J. L. Assessment of export efficiency equations in the Southern Ocean applied to satellite‐based net primary production. J. Geophys. Res. Oceans 123, 2945–2964 (2018).
Google Scholar
Nöthig, E. M. & von Bodungen, B. Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea (Antarctica). Mar. Ecol. Prog. Ser. 56, 281–289 (1989).
Palanques, A., Isla, E., Puig, P., Sanchez-Cabeza, J. A. & Masqué, P. Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA project. Deep Sea Res. Part II 49, 903–920 (2002).
Google Scholar
Manno, C. et al. Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat. Commun. 11, 6051 (2020).
Google Scholar
Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. Part II 43, 129–156 (1996).
Google Scholar
Conte, M. H., Ralph, N. & Ross, E. H. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep Sea Res. Part II 48, 1471–1505 (2001).
Google Scholar
Wynn-Edwards, C. A. et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).
Google Scholar
Schofield, O. et al. Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep Sea Res. Part I 124, 42–54 (2017).
Google Scholar
Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243–274 (2003).
Google Scholar
Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Chang. 10, 710–711 (2020).
Google Scholar
Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I 56, 727–740 (2009).
Google Scholar
Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).
Google Scholar
Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
Google Scholar
McDonnell, A. M. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).
Google Scholar
Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. Part II 59, 147–158 (2012).
Google Scholar
Gleiber, M. R., Steinberg, D. K. & Ducklow, H. W. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog Ser. 471, 23–36 (2012).
Google Scholar
Lampitt, R. S. & Antia, A. N. Particle flux in deep seas: regional characteristics and temporal variability. Deep Sea Res. Part I 44, 1377–1403 (1997).
Google Scholar
Décima, M. et al. Salp blooms drive strong increases in passive carbon export in the Southern Ocean. Nat. Commun. 14, 425 (2023).
Google Scholar
Pauli, N. C. et al. Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula. Nat. Commun. 12, 7168 (2021).
Google Scholar
Iversen, M. H. et al. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res. Part II 138, 116–125 (2017).
Google Scholar
Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I 77, 63–74 (2013).
Google Scholar
Reiss, C. S. in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed. Siegel, V.) 101–144 (Springer, 2016).
Siegel, V. Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Mar. Biol. 96, 483–495 (1987).
Google Scholar
Fraser, W. R. & Hofmann, E. E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog Ser. 265, 1–15 (2003).
Google Scholar
Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).
Google Scholar
Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Part I 101, 54–70 (2015).
Google Scholar
Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861 (2017).
Google Scholar
Siegel, V. in Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 219–230 (Springer, 1988).
Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience. 56, 111–120 (2006).
Google Scholar
Kawaguchi, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 225–246 (Springer, 2016).
Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 279–319 (Springer, 2016).
Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).
Google Scholar
Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).
Google Scholar
Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).
Google Scholar
Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. 60, 1386–1400 (2020).
Google Scholar
Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111–127 (2018).
Google Scholar
Fuller, W. A. Introduction to Statistical Time Series 698 (Wiley, 1996).
Waters, K. J. & Smith, R. C. Palmer LTER: a sampling grid for the Palmer LTER program. Antarctic J. US 27, 236–239 (1992).
Ducklow, H. W. et al. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: a long-term record, 1992–2007. Deep Sea Res. Part II 55, 2118–2131 (2008).
Google Scholar
Knap, A., Michaels, A. F., Close, A., Ducklow, H. W. & Dickson, A. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements (UNESCO, 1994).
Karl, D. M., Dore, J. E., Hebel, D. V. & Winn, C. in Marine Particles: Analysis and Characterization (eds Hurd, D. C. & Spencer, D. W.) 71–77 (American Geophysical Union, 1991).
Kim, H. & Ducklow, H. W. A decadal (2002–2014) analysis for dynamics of heterotrophic bacteria in an Antarctic coastal ecosystem: variability and physical and biogeochemical forcings. Front. Mar. Sci. 3, 214 (2016).
Google Scholar
Martinson, D. G. & Iannuzzi, R. A. in Antarctic Sea Ice: Physical Processes, Interactions and Variability Vol. 74 (ed. Jeffries, M. O.) 243–271 (American Geophysical Union, 1998).
Siegel, V. & Loeb, V. Length and age at maturity of Antarctic krill. Antarctic. Science 6, 479–482 (1994).
Reid, K. & Brierley, A. S. The use of predator-derived krill length–frequency distributions to calculate krill target strength. CCAMLR Sci. 8, 155–163 (2001).