Strange IndiaStrange India


  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article 

    Google Scholar 

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Diddams, S. A. et al. An optical clock based on a single trapped 199 Hg+ ion. Science 293, 825–828 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, K. W. et al. Compact optical atomic clock based on a two-photon transition in rubidium. Phys. Rev. Appl. 9, 014019 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of. Metrologia 56, 065004 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ma, L.-S. et al. Optical frequency dynthesis and comparison with uncertainty at the 10−19 level. Science 303, 1843–1845 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 3, 351–356 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holzwarth, R., Zimmermann, M., Udem, T. & Hansch, T. W. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb. IEEE J. Quantum Electron. 37, 1493–1501 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X 9, 031023 (2019).

    CAS 

    Google Scholar 

  • Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Manurkar, P. et al. Fully self-referenced frequency comb consuming 5 watts of electrical power. OSA Continuum 1, 274–282 (2018).

    Article 
    CAS 

    Google Scholar 

  • Shaw, J. K., Fredrick, C. & Diddams, S. A. Versatile digital approach to laser frequency comb stabilization. OSA Continuum 2, 3262–3271 (2019).

    Article 
    CAS 

    Google Scholar 

  • Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Riehle, F. Frequency Standards: Basics and Applications (Wiley-VCH, 2004).

  • Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photonics 11, 560–564 (2017).

    Article 

    Google Scholar 

  • Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moille, G. et al. Two-dimensional nonlinear mixing between a dissipative Kerr soliton and continuous waves for a higher-dimension frequency comb. Preprint at https://arxiv.org/abs/2303.10026 (2023).

  • Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qureshi, P. C. et al. Soliton linear-wave scattering in a Kerr microresonator. Commun. Phys. 5, 1–8 (2022).

    Article 

    Google Scholar 

  • Zhang, S., Silver, J. M., Bi, T. & Del’Haye, P. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun. 11, 6384 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coullet, P., Gilli, J. M., Monticelli, M. & Vandenberghe, N. A damped pendulum forced with a constant torque. Am. J. Phys. 73, 1122–1128 (2005).

    Article 
    ADS 

    Google Scholar 

  • Todd, C. et al. Dynamics of temporal Kerr cavity solitons in the presence of rapid parameter inhomogeneities: from bichromatic driving to third-order dispersion. Phys. Rev. A 107, 013506 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci. Appl. 8, 50 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Appleton, E. V. The automatic synchronization of triode Oscillators. Proc. Camb. Phil. Soc. 21, (1922).

  • Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article 
    ADS 

    Google Scholar 

  • Moille, G., Li, Q., Xiyuan, L. & Srinivasan, K. pyLLE: a fast and user friendly Lugiato–Lefever equation solver. J. Res. Natl Inst. Stand. Technol. 124, 124012 (2019).

    Article 

    Google Scholar 

  • Stone, J. R. & Papp, S. B. Harnessing dispersion in soliton microcombs to mitigate thermal noise. Phys. Rev. Lett. 125, 153901 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liehl, A. et al. Broadband analysis and self-control of spectral fluctuations in a passively phase-stable Er-doped fiber frequency comb. Phys. Rev. A 101, 023801 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Friederich, F. et al. Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range. Opt. Express 18, 8621–8629 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, L. et al. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4, 036103 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, J.-Y. et al. Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev. 15, 2100091 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lu, J., Li, M., Zou, C.-L., Sayem, A. A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photo-induced second harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moille, G. et al. Integrated buried heaters for efficient spectral control of air-clad microresonator frequency combs. APL Photonics 7, 126104 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *