Strange IndiaStrange India


  • Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wright, E. M. SGLT2 inhibitors: physiology and pharmacology. Kidney360 2, 2027–2037 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klingenberg, M. Ligand–protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry 44, 8563–8570 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966). The terminologyalternating-accesswas first coined in this study of small molecule transporters.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016). This review defined the elevator alternating-access mechanism, which was first observed in the sodium-coupled glutamate transporter GltPh.

    CAS 
    PubMed 

    Google Scholar 

  • Keller, R., Ziegler, C. & Schneider, D. When two turn into one: evolution of membrane transporters from half modules. Biol. Chem. 395, 1379–1388 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Forrest, L. R. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Andersen, C. G., Bavnhoj, L. & Pedersen, B. P. May the proton motive force be with you: a plant transporter review. Curr. Opin. Struct. Biol. 79, 102535 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Bianchi, F., Van’t Klooster, J. S., Ruiz, S. J. & Poolman, B. Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83, e00024–19 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021). This recent review comprehensively explores the structure, function, regulation, dynamics, oligomerization and complexes of the major facilitator superfamily (MFS).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ethayathulla, A. S. et al. Structure-based mechanism for Na+/melibiose symport by MelB. Nat. Commun. 5, 3009 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Claxton, D. P., Jagessar, K. L. & McHaourab, H. S. Principles of alternating access in multidrug and toxin extrusion (MATE) transporters. J. Mol. Biol. 433, 166959 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castellano, S. et al. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na+ in ion-coupled drug efflux. J. Biol. Chem. 296, 100262 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Isom, D. G., Castaneda, C. A., Cannon, B. R. & Garcia-Moreno, B. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrison, E. A., Robinson, A. E., Liu, Y. & Henzler-Wildman, K. A. Asymmetric protonation of EmrE. J. Gen. Physiol. 146, 445–461 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gayen, A., Leninger, M. & Traaseth, N. J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141–145 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E. & McIntosh, L. P. Arginine: its pKa value revisited. Protein Sci. 24, 752–761 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lev, B., Roux, B. & Noskov, S. Y. in Encyclopedia of Metalloproteins (eds Kretsinger, R. H. et al.) (Springer, 2013); https://doi.org/10.1007/978-1-4614-1533-6_242.

  • Jaud, S. et al. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl Acad. Sci. USA 106, 11588–11593 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, J. L. et al. Proton movement and coupling in the POT family of peptide transporters. Proc. Natl Acad. Sci. USA 114, 13182–13187 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smirnova, I. N., Kasho, V. & Kaback, H. R. Protonation and sugar binding to LacY. Proc. Natl Acad. Sci. USA 105, 8896–8901 (2008). This study uses fluourescent-probe-based analysis and kinetics to conclusively demonstrate that LacY is always protonated prior to sugar binding across all physiologically relevant pH ranges.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaback, H. R. & Guan, L. It takes two to tango: the dance of the permease. J. Gen. Physiol. 151, 878–886 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lolkema, J. S. & Poolman, B. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. J. Biol. Chem. 270, 12670–12676 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Bavnhoj, L. et al. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nat. Plants 9, 938–950 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solcan, N. et al. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31, 3411–3421 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madej, M. G., Sun, L., Yan, N. & Kaback, H. R. Functional architecture of MFS d-glucose transporters. Proc. Natl Acad. Sci. USA 111, E719–E727 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leano, J. B. et al. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol. 17, e3000260 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geistlinger, K., Schmidt, J. D. R. & Beitz, E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS Nexus 2, pgad007 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, R. et al. Hydrogen–deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nat. Commun. 11, 6162 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, J. L. et al. Structural basis of antifolate recognition and transport by PCFT. Nature 595, 130–134 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozzi, A. T., Bane, L. B., Zimanyi, C. M. & Gaudet, R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J. Gen. Physiol. 151, 1413–1429 (2019). Transport kinetics of an bacterial metal transporter elegantly show that some transition metals are proton-coupled whereas others are not, and that uncoupled proton uniport is possible in the presence of a membrane potential.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, W. et al. Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat. Commun. 12, 5690 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490, 361–366 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mitrovic, D. et al. Reconstructing the transport cycle in the sugar porter superfamily using coevolution-powered machine learning. eLife 12, e84805 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Canul-Tec, J. C. et al. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J. 41, e108341 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Qiu, B. & Boudker, O. Symport and antiport mechanisms of human glutamate transporters. Nat. Commun. 14, 2579 (2023). This cryo-EM study of a human glutamate transporter reveals the detailed structural mechanism of coupled symport of sodium ions and protons and potassium antiport.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reyes, N., Oh, S. & Boudker, O. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20, 634–640 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3, e02283 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat. Commun. 7, 13420 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ravera, S. et al. Structural insights into the mechanism of the sodium/iodide symporter. Nature 612, 795–801 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, B., Matthies, D., Fortea, E., Yu, Z. & Boudker, O. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Sci. Adv. 7, eabf5814 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jensen, S., Guskov, A., Rempel, S., Hanelt, I. & Slotboom, D. J. Crystal structure of a substrate-free aspartate transporter. Nat. Struct. Mol. Biol. 20, 1224–1226 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Koch, H. P., Hubbard, J. M. & Larsson, H. P. Voltage-independent sodium-binding events reported by the 4B–4C loop in the human glutamate transporter excitatory amino acid transporter 3. J. Biol. Chem. 282, 24547–24553 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Oh, S. & Boudker, O. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. eLife 7, e37291 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 9, e58417 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alleva, C. et al. Na+-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. Sci. Adv. 6, eaba9854 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 9, 5245 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hariharan, P. & Guan, L. Cooperative binding ensures the obligatory melibiose/Na+ cotransport in MelB. J. Gen. Physiol. 153, e202012710 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu, Y. et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 601, 280–284 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grytsyk, N., Sugihara, J., Kaback, H. R. & Hellwig, P. pKa of Glu325 in LacY. Proc. Natl Acad. Sci. USA 114, 1530–1535 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, L. & Kaback, H. R. Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35, 67–91 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosa, L. T., Bianconi, M. E., Thomas, G. H. & Kelly, D. J. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front. Cell Infect. Microbiol. 8, 33 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, J. S. et al. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 14, 1120 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peter, M. F. et al. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 13, 4471 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulligan, C., Leech, A. P., Kelly, D. J. & Thomas, G. H. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J. Biol. Chem. 287, 3598–3608 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mager, T., Rimon, A., Padan, E. & Fendler, K. Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J. Biol. Chem. 286, 23570–23581 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuldiner, S. Competition as a way of life for H+-coupled antiporters. J. Mol. Biol. 426, 2539–2546 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coincon, M. et al. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23, 248–255 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nagarathinam, K. et al. Outward open conformation of a major facilitator superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nat. Commun. 9, 4005 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heng, J. et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 25, 1060–1073 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H. H., Symersky, J. & Lu, M. Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition. Commun. Biol. 2, 210 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yerushalmi, H. & Schuldiner, S. A common binding site for substrates and protons in EmrE, an ion-coupled multidrug transporter. FEBS Lett. 476, 93–97 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nelson, P. J. & Rudnick, G. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254, 10084–10089 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, S. G. et al. The dopamine transporter antiports potassium to increase the uptake of dopamine. Nat. Commun. 13, 2446 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Billesbolle, C. B. et al. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter. Nat. Commun. 7, 12755 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, S. G., Nygaard, A., Mindell, J. A. & Loland, C. J. Exploring the K+ binding site and its coupling to transport in the neurotransmitter:sodium symporter LeuT. eLife 12, RP87985 (2023).

    Google Scholar 

  • Picollo, A., Xu, Y., Johner, N., Berneche, S. & Accardi, A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl exchanger. Nat. Struct. Mol. Biol. 19, 525–531 (2012). This elegant study uses isothermal titration calorimetry to uncover an unexpected coupling between protonation and Cl binding in a bacterial H+/Cl exchanger.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Accardi, A. Structure and gating of CLC channels and exchangers. J. Physiol. 593, 4129–4138 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, J. L., Mindell, J. A. & Newstead, S. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273 (2014). In this study, a reconstituted proteoliposome system is used to demonstrate that the proton:substrate stoichiometry is different between di- and tri-peptides, highlighting flexibility in substrate–H+ coupling.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fluman, N. & Bibi, E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim. Biophys. Acta 1794, 738–747 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Tirosh, O. et al. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc. Natl Acad. Sci. USA 109, 12473–12478 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. & Bibi, E. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J. 18, 822–832 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dohan, O. et al. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc. Natl Acad. Sci. USA 104, 20250–20255 (2007). This study revealed that iodide and perchlorate are co-transported by the LeuT-fold protein NIS with distinct numbers of Na+ ions.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewinson, O. et al. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc. Natl Acad. Sci. USA 100, 1667–1672 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaedler, T. A. & van Veen, H. W. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J. 24, 3653–3661 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Sigal, N., Fluman, N., Siemion, S. & Bibi, E. The secondary multidrug/proton antiporter MdfA tolerates displacements of an essential negatively charged side chain. J. Biol. Chem. 284, 6966–6971 (2009). This study showed that the H+-coupling residue can be shifted to a different location in the bacterial MFS protein while retaining its ability to use export drugs, demonstrating that H+-coupled transport can be flexible.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Debruycker, V. et al. An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat. Struct. Mol. Biol. 27, 829–835 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henderson, R. & Poolman, B. Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae. Sci Rep. 7, 14375 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. & Voth, G. A. A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces. Proc. Natl Acad. Sci. USA 118, e2113141118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, W., Cheng, R. C., Maduke, M. C. & Tajkhorshid, E. Water access points and hydration pathways in CLC H+/Cl transporters. Proc. Natl Acad. Sci. USA 111, 1819–1824 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Key computational findings reveal proton transfer as driving the functional cycle in the phosphate transporter PiPT. Proc. Natl Acad. Sci. USA 118, e2101932118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S., Mayes, H. B., Swanson, J. M. & Voth, G. A. The origin of coupled chloride and proton transport in a Cl/H+ antiporter. J. Am. Chem. Soc. 138, 14923–14930 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozzi, A. T. et al. Structures in multiple conformations reveal distinct transition metal and proton pathways in an Nramp transporter. eLife 8, e41124 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).

  • Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

  • Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007). This article showed that charged neutralization with either a negatively charged residue or a choloride ion is evolutionary-conserved to such an extent that just a single mutation introduces Cl coupling to the bacterial NSS homologue LeuT.

  • Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weng, J. et al. Insight into the mechanism of H+-coupled nucleobase transport. Proc. Natl Acad. Sci. USA 120, e2302799120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalayil, S., Schulze, S. & Kuhlbrandt, W. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc. Natl Acad. Sci. USA 110, 17296–17301 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trebesch, N. & Tajkhorshid, E. Structure reveals homology in elevator transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.06.14.544989 (2023).

  • LeVine, M. V., Cuendet, M. A., Khelashvili, G. & Weinstein, H. Allosteric mechanisms of molecular machines at the membrane: transport by sodium-coupled symporters. Chem. Rev. 116, 6552–6587 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Swanson, J. M. Multiscale kinetic analysis of proteins. Curr. Opin. Struct. Biol. 72, 169–175 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Henderson, R. K., Fendler, K. & Poolman, B. Coupling efficiency of secondary active transporters. Curr. Opin. Biotechnol. 58, 62–71 (2019). This review highlights examples of imperfect ion coupling in secondary-active transporters and where these ion leaks may benefit the host organism.

    CAS 
    PubMed 

    Google Scholar 

  • Bazzone, A., Zabadne, A. J., Salisowski, A., Madej, M. G. & Fendler, K. A loose relationship: incomplete H+/sugar coupling in the MFS sugar transporter GlcP. Biophys. J. 113, 2736–2749 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, H. H. & Miller, C. Intracellular proton-transfer mutants in a CLC Cl/H+ exchanger. J. Gen. Physiol. 133, 131–138 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Miller, C. & Nguitragool, W. A provisional transport mechanism for a chloride channel-type Cl/H+ exchanger. Philos. Trans. R. Soc. Lond. B 364, 175–180 (2009).

    CAS 

    Google Scholar 

  • Panayotova-Heiermann, M., Loo, D. D. & Wright, E. M. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270, 27099–27105 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Galli, A., DeFelice, L. J., Duke, B. J., Moore, K. R. & Blakely, R. D. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J. Exp. Biol. 198, 2197–2212 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Vandenberg, R. J., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J. Biol. Chem. 270, 17668–17671 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Cammack, J. N., Rakhilin, S. V. & Schwartz, E. A. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13, 949–960 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Borre, L., Andreassen, T. F., Shi, L., Weinstein, H. & Gether, U. The second sodium site in the dopamine transporter controls cation permeation and is regulated by chloride. J. Biol. Chem. 289, 25764–25773 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bisignano, P. et al. A kinetic mechanism for enhanced selectivity of membrane transport. PLoS Comput. Biol. 16, e1007789 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24, 377–386 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zeuthen, T., Gorraitz, E., Her, K., Wright, E. M. & Loo, D. D. Structural and functional significance of water permeation through cotransporters. Proc. Natl Acad. Sci. USA 113, E6887–E6894 (2016). This pivotal study demonstrated that water is co-transported together with glucose across the apical membrane of the small intestine by SGLT1 rather than osmosis, a pathway of physiological significance in rehydration therapy.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loo, D. D., Zeuthen, T., Chandy, G. & Wright, E. M. Cotransport of water by the Na+/glucose cotransporter. Proc. Natl Acad. Sci. USA 93, 13367–13370 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Transient formation of water-conducting states in membrane transporters. Proc. Natl Acad. Sci. USA 110, 7696–7701 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terry, D. S. et al. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nat. Commun. 9, 230 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozzi, A. T. & Gaudet, R. Molecular mechanism of Nramp-family transition metal transport. J. Mol. Biol. 433, 166991 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spreacker, P. J. et al. Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility. Nat. Commun. 13, 7655 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vandenberg, R. J., Huang, S. & Ryan, R. M. Slips, leaks and channels in glutamate transporters. Channels 2, 51–58 (2008).

    PubMed 

    Google Scholar 

  • Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 14, 365–371 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, I. et al. Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591, 327–331 (2021). In this elegant paper, the authors combine cross-linking, electrophysiology and cryo-EM to capture the chloride-conducting state of a Na+-coupled glutamate transporter.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, R., Eriksen, J. & Edwards, R. H. The dual role of chloride in synaptic vesicle glutamate transport. eLife 7, e34896 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F. et al. Ion transport and regulation in a synaptic vesicle glutamate transporter. Science 368, 893–897 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023). This recent review surveys how specific lipids and lipid bilayer properties adjust to regulate the activity of membrane proteins.

    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, T. & Menon, A. K. Transbilayer lipid asymmetry. Curr. Biol. 28, R386–R391 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Dumas, F., Tocanne, J. F., Leblanc, G. & Lebrun, M. C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39, 4846–4854 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Corin, K. & Bowie, J. U. How physical forces drive the process of helical membrane protein folding. EMBO Rep. 23, e53025 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadda, R. et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. et al. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 8, e50576 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van ‘t Klooster, J. S. et al. Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. eLife 9, e57003 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsuoka, R. et al. Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nat. Struct. Mol. Biol. 29, 108–120 (2022). Cryo-EM structures reveal a surprisingly dynamic oligomeric interface in the elevator Na+/H+ exchanger NHA2, which could be remodelled by the binding of specific lipids.

  • Winklemann, I. et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. 39, e105908 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokane S, M. P. et al. PI-(3,5)P2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9. Preprint at bioRxiv https://doi.org/10.1101/2023.09.10.557050 (2023).

  • Romantsov, T., Guan, Z. & Wood, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta 1788, 2092–2100 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nji, E., Chatzikyriakidou, Y., Landreh, M. & Drew, D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat. Commun. 9, 4253 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landreh, M. et al. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nat. Commun. 8, 13993 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pyle, E. et al. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem. Biol. 25, 840–848.e844 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8, 14089 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luethi, D. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun. Biol. 5, 1259 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderluh, A. et al. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J. Biol. Chem. 289, 4387–4394 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, A. K. et al. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J. Biol. Chem. 294, 5632–5642 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chew, T. A., Zhang, J. & Feng, L. High-resolution views and transport mechanisms of the NKCC1 and KCC transporters. J. Mol. Biol. 433, 167056 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arkhipova, V., Guskov, A. & Slotboom, D. J. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Nat. Commun. 11, 998 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, S. B. Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim. Biophys. Acta 1851, 620–628 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinz, V. et al. Osmotic stress response in BetP: how lipids and K+ team up to overcome downregulation. Preprint at bioRxiv https://doi.org/10.1101/2022.06.02.493408 (2022).

  • Perez, C., Khafizov, K., Forrest, L. R., Kramer, R. & Ziegler, C. The role of trimerization in the osmoregulated betaine transporter BetP. EMBO Rep. 12, 804–810 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leray, X. et al. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. eLife 11, e74136 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, S. F. & Counillon, L. The SLC9A–C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol. Rev. 99, 2015–2113 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e2735 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. Cholesterol stimulates the cellular uptake of l-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). J. Biol. Chem. 296, 100204 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raunser, S. et al. Heterologously expressed GLT-1 associates in approximately 200-nm protein–lipid islands. Biophys. J. 91, 3718–3726 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butchbach, M. E., Tian, G., Guo, H. & Lin, C. L. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J. Biol. Chem. 279, 34388–34396 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, D., Zhao, Z., Tajkhorshid, E. & Gouaux, E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc. Natl Acad. Sci. USA 120, e2304602120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laursen, L. et al. Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martens, C. et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat. Commun. 9, 4151 (2018). In this study, hydrogen–deuterium exchange mass spectrometry and molecular dynamics simulations show how lipid compositions can influence conformational preferences and dynamics in MFS transporters.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersson, M. et al. Proton-coupled dynamics in lactose permease. Structure 20, 1893–1904 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bogdanov, M. & Dowhan, W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J. Biol. Chem. 270, 732–739 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Hariharan, P. et al. Structural and functional characterization of protein-lipid interactions of the Salmonella typhimurium melibiose transporter MelB. BMC Biol. 16, 85 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suades, A. et al. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat. Commun. 14, 4070 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van ‘t Klooster, J. S. et al. Membrane lipid requirements of the lysine transporter Lyp1 from Saccharomyces cerevisiae. J. Mol. Biol. 432, 4023–4031 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hresko, R. C., Kraft, T. E., Quigley, A., Carpenter, E. P. & Hruz, P. W. Mammalian glucose transporter activity is dependent upon anionic and conical phospholipids. J. Biol. Chem. 291, 17271–17282 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reddy K. D. et al. Uncoupled substrate binding underlies the evolutionary switch between Na+ and H+-coupled prokaryotic aspartate transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.12.03.569786 (2023).

  • Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Single-molecule visualization of conformational changes and substrate transport in the vitamin B(12) ABC importer BtuCD–F. Nat. Commun. 8, 1652 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitzgerald, G. A. et al. Quantifying secondary transport at single-molecule resolution. Nature 575, 528–534 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciftci, D. et al. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci. Adv. 6, eaaz1949 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciftci, D. et al. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl Acad. Sci. USA 118, e2025520118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, X. Z. et al. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Front. Plant Sci. 12, 715694 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl Acad. Sci. USA 120, e2302325120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Windler, F. et al. The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat. Commun. 9, 2809 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, S. A. et al. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. Sci. Adv. 9, eadh4251 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, Y. & Chen, L. Structural basis for the binding of DNP and purine nucleotides onto UCP1. Nature 620, 226–231 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *