Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).
Google Scholar
Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2021).
Google Scholar
Wright, E. M. SGLT2 inhibitors: physiology and pharmacology. Kidney360 2, 2027–2037 (2021).
Google Scholar
Klingenberg, M. Ligand–protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry 44, 8563–8570 (2005).
Google Scholar
Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).
Google Scholar
Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966). The terminology ‘alternating-access’ was first coined in this study of small molecule transporters.
Google Scholar
Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016). This review defined the elevator alternating-access mechanism, which was first observed in the sodium-coupled glutamate transporter GltPh.
Google Scholar
Keller, R., Ziegler, C. & Schneider, D. When two turn into one: evolution of membrane transporters from half modules. Biol. Chem. 395, 1379–1388 (2014).
Google Scholar
Forrest, L. R. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 (2015).
Google Scholar
Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).
Google Scholar
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Google Scholar
Andersen, C. G., Bavnhoj, L. & Pedersen, B. P. May the proton motive force be with you: a plant transporter review. Curr. Opin. Struct. Biol. 79, 102535 (2023).
Google Scholar
Bianchi, F., Van’t Klooster, J. S., Ruiz, S. J. & Poolman, B. Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83, e00024–19 (2019).
Google Scholar
Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021). This recent review comprehensively explores the structure, function, regulation, dynamics, oligomerization and complexes of the major facilitator superfamily (MFS).
Google Scholar
Ethayathulla, A. S. et al. Structure-based mechanism for Na+/melibiose symport by MelB. Nat. Commun. 5, 3009 (2014).
Google Scholar
Claxton, D. P., Jagessar, K. L. & McHaourab, H. S. Principles of alternating access in multidrug and toxin extrusion (MATE) transporters. J. Mol. Biol. 433, 166959 (2021).
Google Scholar
Castellano, S. et al. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na+ in ion-coupled drug efflux. J. Biol. Chem. 296, 100262 (2021).
Google Scholar
Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).
Google Scholar
Isom, D. G., Castaneda, C. A., Cannon, B. R. & Garcia-Moreno, B. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).
Google Scholar
Morrison, E. A., Robinson, A. E., Liu, Y. & Henzler-Wildman, K. A. Asymmetric protonation of EmrE. J. Gen. Physiol. 146, 445–461 (2015).
Google Scholar
Gayen, A., Leninger, M. & Traaseth, N. J. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat. Chem. Biol. 12, 141–145 (2016).
Google Scholar
Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E. & McIntosh, L. P. Arginine: its pKa value revisited. Protein Sci. 24, 752–761 (2015).
Google Scholar
Lev, B., Roux, B. & Noskov, S. Y. in Encyclopedia of Metalloproteins (eds Kretsinger, R. H. et al.) (Springer, 2013); https://doi.org/10.1007/978-1-4614-1533-6_242.
Jaud, S. et al. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl Acad. Sci. USA 106, 11588–11593 (2009).
Google Scholar
Parker, J. L. et al. Proton movement and coupling in the POT family of peptide transporters. Proc. Natl Acad. Sci. USA 114, 13182–13187 (2017).
Google Scholar
Smirnova, I. N., Kasho, V. & Kaback, H. R. Protonation and sugar binding to LacY. Proc. Natl Acad. Sci. USA 105, 8896–8901 (2008). This study uses fluourescent-probe-based analysis and kinetics to conclusively demonstrate that LacY is always protonated prior to sugar binding across all physiologically relevant pH ranges.
Google Scholar
Kaback, H. R. & Guan, L. It takes two to tango: the dance of the permease. J. Gen. Physiol. 151, 878–886 (2019).
Google Scholar
Lolkema, J. S. & Poolman, B. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. J. Biol. Chem. 270, 12670–12676 (1995).
Google Scholar
Bavnhoj, L. et al. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. Nat. Plants 9, 938–950 (2023).
Google Scholar
Solcan, N. et al. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31, 3411–3421 (2012).
Google Scholar
Madej, M. G., Sun, L., Yan, N. & Kaback, H. R. Functional architecture of MFS d-glucose transporters. Proc. Natl Acad. Sci. USA 111, E719–E727 (2014).
Google Scholar
Leano, J. B. et al. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol. 17, e3000260 (2019).
Google Scholar
Geistlinger, K., Schmidt, J. D. R. & Beitz, E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS Nexus 2, pgad007 (2023).
Google Scholar
Jia, R. et al. Hydrogen–deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nat. Commun. 11, 6162 (2020).
Google Scholar
Parker, J. L. et al. Structural basis of antifolate recognition and transport by PCFT. Nature 595, 130–134 (2021).
Google Scholar
Bozzi, A. T., Bane, L. B., Zimanyi, C. M. & Gaudet, R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J. Gen. Physiol. 151, 1413–1429 (2019). Transport kinetics of an bacterial metal transporter elegantly show that some transition metals are proton-coupled whereas others are not, and that uncoupled proton uniport is possible in the presence of a membrane potential.
Google Scholar
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).
Google Scholar
Wang, W. et al. Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat. Commun. 12, 5690 (2021).
Google Scholar
Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).
Google Scholar
Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490, 361–366 (2012).
Google Scholar
Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).
Google Scholar
Mitrovic, D. et al. Reconstructing the transport cycle in the sugar porter superfamily using coevolution-powered machine learning. eLife 12, e84805 (2023).
Google Scholar
Canul-Tec, J. C. et al. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J. 41, e108341 (2022).
Google Scholar
Qiu, B. & Boudker, O. Symport and antiport mechanisms of human glutamate transporters. Nat. Commun. 14, 2579 (2023). This cryo-EM study of a human glutamate transporter reveals the detailed structural mechanism of coupled symport of sodium ions and protons and potassium antiport.
Google Scholar
Reyes, N., Oh, S. & Boudker, O. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20, 634–640 (2013).
Google Scholar
Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3, e02283 (2014).
Google Scholar
Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat. Commun. 7, 13420 (2016).
Google Scholar
Ravera, S. et al. Structural insights into the mechanism of the sodium/iodide symporter. Nature 612, 795–801 (2022).
Google Scholar
Qiu, B., Matthies, D., Fortea, E., Yu, Z. & Boudker, O. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Sci. Adv. 7, eabf5814 (2021).
Google Scholar
Jensen, S., Guskov, A., Rempel, S., Hanelt, I. & Slotboom, D. J. Crystal structure of a substrate-free aspartate transporter. Nat. Struct. Mol. Biol. 20, 1224–1226 (2013).
Google Scholar
Koch, H. P., Hubbard, J. M. & Larsson, H. P. Voltage-independent sodium-binding events reported by the 4B–4C loop in the human glutamate transporter excitatory amino acid transporter 3. J. Biol. Chem. 282, 24547–24553 (2007).
Google Scholar
Oh, S. & Boudker, O. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. eLife 7, e37291 (2018).
Google Scholar
Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).
Google Scholar
Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 9, e58417 (2020).
Google Scholar
Alleva, C. et al. Na+-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. Sci. Adv. 6, eaba9854 (2020).
Google Scholar
Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 9, 5245 (2018).
Google Scholar
Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).
Google Scholar
Hariharan, P. & Guan, L. Cooperative binding ensures the obligatory melibiose/Na+ cotransport in MelB. J. Gen. Physiol. 153, e202012710 (2021).
Google Scholar
Niu, Y. et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 601, 280–284 (2022).
Google Scholar
Grytsyk, N., Sugihara, J., Kaback, H. R. & Hellwig, P. pKa of Glu325 in LacY. Proc. Natl Acad. Sci. USA 114, 1530–1535 (2017).
Google Scholar
Guan, L. & Kaback, H. R. Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35, 67–91 (2006).
Google Scholar
Rosa, L. T., Bianconi, M. E., Thomas, G. H. & Kelly, D. J. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front. Cell Infect. Microbiol. 8, 33 (2018).
Google Scholar
Davies, J. S. et al. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 14, 1120 (2023).
Google Scholar
Peter, M. F. et al. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat. Commun. 13, 4471 (2022).
Google Scholar
Mulligan, C., Leech, A. P., Kelly, D. J. & Thomas, G. H. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J. Biol. Chem. 287, 3598–3608 (2012).
Google Scholar
Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).
Google Scholar
Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).
Google Scholar
Mager, T., Rimon, A., Padan, E. & Fendler, K. Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J. Biol. Chem. 286, 23570–23581 (2011).
Google Scholar
Schuldiner, S. Competition as a way of life for H+-coupled antiporters. J. Mol. Biol. 426, 2539–2546 (2014).
Google Scholar
Coincon, M. et al. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23, 248–255 (2016).
Google Scholar
Nagarathinam, K. et al. Outward open conformation of a major facilitator superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nat. Commun. 9, 4005 (2018).
Google Scholar
Heng, J. et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 25, 1060–1073 (2015).
Google Scholar
Wu, H. H., Symersky, J. & Lu, M. Structure of an engineered multidrug transporter MdfA reveals the molecular basis for substrate recognition. Commun. Biol. 2, 210 (2019).
Google Scholar
Yerushalmi, H. & Schuldiner, S. A common binding site for substrates and protons in EmrE, an ion-coupled multidrug transporter. FEBS Lett. 476, 93–97 (2000).
Google Scholar
Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).
Google Scholar
Nelson, P. J. & Rudnick, G. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254, 10084–10089 (1979).
Google Scholar
Schmidt, S. G. et al. The dopamine transporter antiports potassium to increase the uptake of dopamine. Nat. Commun. 13, 2446 (2022).
Google Scholar
Billesbolle, C. B. et al. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter. Nat. Commun. 7, 12755 (2016).
Google Scholar
Schmidt, S. G., Nygaard, A., Mindell, J. A. & Loland, C. J. Exploring the K+ binding site and its coupling to transport in the neurotransmitter:sodium symporter LeuT. eLife 12, RP87985 (2023).
Picollo, A., Xu, Y., Johner, N., Berneche, S. & Accardi, A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl− exchanger. Nat. Struct. Mol. Biol. 19, 525–531 (2012). This elegant study uses isothermal titration calorimetry to uncover an unexpected coupling between protonation and Cl− binding in a bacterial H+/Cl− exchanger.
Google Scholar
Accardi, A. Structure and gating of CLC channels and exchangers. J. Physiol. 593, 4129–4138 (2015).
Google Scholar
Parker, J. L., Mindell, J. A. & Newstead, S. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273 (2014). In this study, a reconstituted proteoliposome system is used to demonstrate that the proton:substrate stoichiometry is different between di- and tri-peptides, highlighting flexibility in substrate–H+ coupling.
Google Scholar
Fluman, N. & Bibi, E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim. Biophys. Acta 1794, 738–747 (2009).
Google Scholar
Tirosh, O. et al. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc. Natl Acad. Sci. USA 109, 12473–12478 (2012).
Google Scholar
Edgar, R. & Bibi, E. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J. 18, 822–832 (1999).
Google Scholar
Dohan, O. et al. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc. Natl Acad. Sci. USA 104, 20250–20255 (2007). This study revealed that iodide and perchlorate are co-transported by the LeuT-fold protein NIS with distinct numbers of Na+ ions.
Google Scholar
Lewinson, O. et al. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc. Natl Acad. Sci. USA 100, 1667–1672 (2003).
Google Scholar
Schaedler, T. A. & van Veen, H. W. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J. 24, 3653–3661 (2010).
Google Scholar
Sigal, N., Fluman, N., Siemion, S. & Bibi, E. The secondary multidrug/proton antiporter MdfA tolerates displacements of an essential negatively charged side chain. J. Biol. Chem. 284, 6966–6971 (2009). This study showed that the H+-coupling residue can be shifted to a different location in the bacterial MFS protein while retaining its ability to use export drugs, demonstrating that H+-coupled transport can be flexible.
Google Scholar
Debruycker, V. et al. An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat. Struct. Mol. Biol. 27, 829–835 (2020).
Google Scholar
Henderson, R. & Poolman, B. Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae. Sci Rep. 7, 14375 (2017).
Google Scholar
Li, C. & Voth, G. A. A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces. Proc. Natl Acad. Sci. USA 118, e2113141118 (2021).
Google Scholar
Han, W., Cheng, R. C., Maduke, M. C. & Tajkhorshid, E. Water access points and hydration pathways in CLC H+/Cl− transporters. Proc. Natl Acad. Sci. USA 111, 1819–1824 (2014).
Google Scholar
Liu, Y. et al. Key computational findings reveal proton transfer as driving the functional cycle in the phosphate transporter PiPT. Proc. Natl Acad. Sci. USA 118, e2101932118 (2021).
Google Scholar
Lee, S., Mayes, H. B., Swanson, J. M. & Voth, G. A. The origin of coupled chloride and proton transport in a Cl−/H+ antiporter. J. Am. Chem. Soc. 138, 14923–14930 (2016).
Google Scholar
Bozzi, A. T. et al. Structures in multiple conformations reveal distinct transition metal and proton pathways in an Nramp transporter. eLife 8, e41124 (2019).
Google Scholar
Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).
Google Scholar
Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).
Google Scholar
Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).
Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).
Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007). This article showed that charged neutralization with either a negatively charged residue or a choloride ion is evolutionary-conserved to such an extent that just a single mutation introduces Cl− coupling to the bacterial NSS homologue LeuT.
Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).
Google Scholar
Weng, J. et al. Insight into the mechanism of H+-coupled nucleobase transport. Proc. Natl Acad. Sci. USA 120, e2302799120 (2023).
Google Scholar
Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).
Google Scholar
Kalayil, S., Schulze, S. & Kuhlbrandt, W. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc. Natl Acad. Sci. USA 110, 17296–17301 (2013).
Google Scholar
Trebesch, N. & Tajkhorshid, E. Structure reveals homology in elevator transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.06.14.544989 (2023).
LeVine, M. V., Cuendet, M. A., Khelashvili, G. & Weinstein, H. Allosteric mechanisms of molecular machines at the membrane: transport by sodium-coupled symporters. Chem. Rev. 116, 6552–6587 (2016).
Google Scholar
Swanson, J. M. Multiscale kinetic analysis of proteins. Curr. Opin. Struct. Biol. 72, 169–175 (2022).
Google Scholar
Henderson, R. K., Fendler, K. & Poolman, B. Coupling efficiency of secondary active transporters. Curr. Opin. Biotechnol. 58, 62–71 (2019). This review highlights examples of imperfect ion coupling in secondary-active transporters and where these ion leaks may benefit the host organism.
Google Scholar
Bazzone, A., Zabadne, A. J., Salisowski, A., Madej, M. G. & Fendler, K. A loose relationship: incomplete H+/sugar coupling in the MFS sugar transporter GlcP. Biophys. J. 113, 2736–2749 (2017).
Google Scholar
Walden, M. et al. Uncoupling and turnover in a Cl−/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).
Google Scholar
Lim, H. H. & Miller, C. Intracellular proton-transfer mutants in a CLC Cl−/H+ exchanger. J. Gen. Physiol. 133, 131–138 (2009).
Google Scholar
Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl−/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).
Google Scholar
Miller, C. & Nguitragool, W. A provisional transport mechanism for a chloride channel-type Cl−/H+ exchanger. Philos. Trans. R. Soc. Lond. B 364, 175–180 (2009).
Google Scholar
Panayotova-Heiermann, M., Loo, D. D. & Wright, E. M. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270, 27099–27105 (1995).
Google Scholar
Galli, A., DeFelice, L. J., Duke, B. J., Moore, K. R. & Blakely, R. D. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J. Exp. Biol. 198, 2197–2212 (1995).
Google Scholar
Vandenberg, R. J., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J. Biol. Chem. 270, 17668–17671 (1995).
Google Scholar
Cammack, J. N., Rakhilin, S. V. & Schwartz, E. A. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13, 949–960 (1994).
Google Scholar
Borre, L., Andreassen, T. F., Shi, L., Weinstein, H. & Gether, U. The second sodium site in the dopamine transporter controls cation permeation and is regulated by chloride. J. Biol. Chem. 289, 25764–25773 (2014).
Google Scholar
Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994).
Google Scholar
Bisignano, P. et al. A kinetic mechanism for enhanced selectivity of membrane transport. PLoS Comput. Biol. 16, e1007789 (2020).
Google Scholar
Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24, 377–386 (2009).
Google Scholar
Zeuthen, T., Gorraitz, E., Her, K., Wright, E. M. & Loo, D. D. Structural and functional significance of water permeation through cotransporters. Proc. Natl Acad. Sci. USA 113, E6887–E6894 (2016). This pivotal study demonstrated that water is co-transported together with glucose across the apical membrane of the small intestine by SGLT1 rather than osmosis, a pathway of physiological significance in rehydration therapy.
Google Scholar
Loo, D. D., Zeuthen, T., Chandy, G. & Wright, E. M. Cotransport of water by the Na+/glucose cotransporter. Proc. Natl Acad. Sci. USA 93, 13367–13370 (1996).
Google Scholar
Li, J. et al. Transient formation of water-conducting states in membrane transporters. Proc. Natl Acad. Sci. USA 110, 7696–7701 (2013).
Google Scholar
Terry, D. S. et al. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nat. Commun. 9, 230 (2018).
Google Scholar
Bozzi, A. T. & Gaudet, R. Molecular mechanism of Nramp-family transition metal transport. J. Mol. Biol. 433, 166991 (2021).
Google Scholar
Spreacker, P. J. et al. Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility. Nat. Commun. 13, 7655 (2022).
Google Scholar
Vandenberg, R. J., Huang, S. & Ryan, R. M. Slips, leaks and channels in glutamate transporters. Channels 2, 51–58 (2008).
Google Scholar
Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).
Google Scholar
Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 14, 365–371 (2007).
Google Scholar
Chen, I. et al. Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591, 327–331 (2021). In this elegant paper, the authors combine cross-linking, electrophysiology and cryo-EM to capture the chloride-conducting state of a Na+-coupled glutamate transporter.
Google Scholar
Chang, R., Eriksen, J. & Edwards, R. H. The dual role of chloride in synaptic vesicle glutamate transport. eLife 7, e34896 (2018).
Google Scholar
Li, F. et al. Ion transport and regulation in a synaptic vesicle glutamate transporter. Science 368, 893–897 (2020).
Google Scholar
Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279 (2022).
Google Scholar
Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).
Google Scholar
Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023). This recent review surveys how specific lipids and lipid bilayer properties adjust to regulate the activity of membrane proteins.
Google Scholar
Kobayashi, T. & Menon, A. K. Transbilayer lipid asymmetry. Curr. Biol. 28, R386–R391 (2018).
Google Scholar
Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).
Google Scholar
Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).
Google Scholar
Dumas, F., Tocanne, J. F., Leblanc, G. & Lebrun, M. C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39, 4846–4854 (2000).
Google Scholar
Corin, K. & Bowie, J. U. How physical forces drive the process of helical membrane protein folding. EMBO Rep. 23, e53025 (2022).
Google Scholar
Chadda, R. et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021).
Google Scholar
Jiang, Y. et al. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).
Google Scholar
Zhou, W. et al. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 8, e50576 (2019).
Google Scholar
van ‘t Klooster, J. S. et al. Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. eLife 9, e57003 (2020).
Google Scholar
Matsuoka, R. et al. Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nat. Struct. Mol. Biol. 29, 108–120 (2022). Cryo-EM structures reveal a surprisingly dynamic oligomeric interface in the elevator Na+/H+ exchanger NHA2, which could be remodelled by the binding of specific lipids.
Winklemann, I. et al. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J. 39, e105908 (2020).
Google Scholar
Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).
Google Scholar
Kokane S, M. P. et al. PI-(3,5)P2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9. Preprint at bioRxiv https://doi.org/10.1101/2023.09.10.557050 (2023).
Romantsov, T., Guan, Z. & Wood, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta 1788, 2092–2100 (2009).
Google Scholar
Nji, E., Chatzikyriakidou, Y., Landreh, M. & Drew, D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nat. Commun. 9, 4253 (2018).
Google Scholar
Landreh, M. et al. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nat. Commun. 8, 13993 (2017).
Google Scholar
Pyle, E. et al. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem. Biol. 25, 840–848.e844 (2018).
Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).
Google Scholar
Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8, 14089 (2017).
Google Scholar
Luethi, D. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun. Biol. 5, 1259 (2022).
Google Scholar
Anderluh, A. et al. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J. Biol. Chem. 289, 4387–4394 (2014).
Google Scholar
Das, A. K. et al. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J. Biol. Chem. 294, 5632–5642 (2019).
Google Scholar
Chew, T. A., Zhang, J. & Feng, L. High-resolution views and transport mechanisms of the NKCC1 and KCC transporters. J. Mol. Biol. 433, 167056 (2021).
Google Scholar
Arkhipova, V., Guskov, A. & Slotboom, D. J. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Nat. Commun. 11, 998 (2020).
Google Scholar
Hansen, S. B. Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim. Biophys. Acta 1851, 620–628 (2015).
Google Scholar
Heinz, V. et al. Osmotic stress response in BetP: how lipids and K+ team up to overcome downregulation. Preprint at bioRxiv https://doi.org/10.1101/2022.06.02.493408 (2022).
Perez, C., Khafizov, K., Forrest, L. R., Kramer, R. & Ziegler, C. The role of trimerization in the osmoregulated betaine transporter BetP. EMBO Rep. 12, 804–810 (2011).
Google Scholar
Leray, X. et al. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. eLife 11, e74136 (2022).
Google Scholar
Pedersen, S. F. & Counillon, L. The SLC9A–C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol. Rev. 99, 2015–2113 (2019).
Google Scholar
Tang, H. et al. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Mol. Cell 83, 2739–2752.e2735 (2023).
Google Scholar
Zhang, L. et al. Cholesterol stimulates the cellular uptake of l-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). J. Biol. Chem. 296, 100204 (2021).
Google Scholar
Raunser, S. et al. Heterologously expressed GLT-1 associates in approximately 200-nm protein–lipid islands. Biophys. J. 91, 3718–3726 (2006).
Google Scholar
Butchbach, M. E., Tian, G., Guo, H. & Lin, C. L. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J. Biol. Chem. 279, 34388–34396 (2004).
Google Scholar
Yang, D., Zhao, Z., Tajkhorshid, E. & Gouaux, E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc. Natl Acad. Sci. USA 120, e2304602120 (2023).
Google Scholar
Laursen, L. et al. Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).
Google Scholar
Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).
Google Scholar
Martens, C. et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat. Commun. 9, 4151 (2018). In this study, hydrogen–deuterium exchange mass spectrometry and molecular dynamics simulations show how lipid compositions can influence conformational preferences and dynamics in MFS transporters.
Google Scholar
Andersson, M. et al. Proton-coupled dynamics in lactose permease. Structure 20, 1893–1904 (2012).
Google Scholar
Bogdanov, M. & Dowhan, W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J. Biol. Chem. 270, 732–739 (1995).
Google Scholar
Hariharan, P. et al. Structural and functional characterization of protein-lipid interactions of the Salmonella typhimurium melibiose transporter MelB. BMC Biol. 16, 85 (2018).
Google Scholar
Suades, A. et al. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat. Commun. 14, 4070 (2023).
Google Scholar
van ‘t Klooster, J. S. et al. Membrane lipid requirements of the lysine transporter Lyp1 from Saccharomyces cerevisiae. J. Mol. Biol. 432, 4023–4031 (2020).
Google Scholar
Hresko, R. C., Kraft, T. E., Quigley, A., Carpenter, E. P. & Hruz, P. W. Mammalian glucose transporter activity is dependent upon anionic and conical phospholipids. J. Biol. Chem. 291, 17271–17282 (2016).
Google Scholar
Reddy K. D. et al. Uncoupled substrate binding underlies the evolutionary switch between Na+ and H+-coupled prokaryotic aspartate transporters. Preprint at bioRxiv https://doi.org/10.1101/2023.12.03.569786 (2023).
Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Single-molecule visualization of conformational changes and substrate transport in the vitamin B(12) ABC importer BtuCD–F. Nat. Commun. 8, 1652 (2017).
Google Scholar
Fitzgerald, G. A. et al. Quantifying secondary transport at single-molecule resolution. Nature 575, 528–534 (2019).
Google Scholar
Ciftci, D. et al. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci. Adv. 6, eaaz1949 (2020).
Google Scholar
Ciftci, D. et al. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl Acad. Sci. USA 118, e2025520118 (2021).
Google Scholar
Fang, X. Z. et al. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Front. Plant Sci. 12, 715694 (2021).
Google Scholar
Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl Acad. Sci. USA 120, e2302325120 (2023).
Google Scholar
Windler, F. et al. The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat. Commun. 9, 2809 (2018).
Google Scholar
Jones, S. A. et al. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. Sci. Adv. 9, eadh4251 (2023).
Google Scholar
Kang, Y. & Chen, L. Structural basis for the binding of DNP and purine nucleotides onto UCP1. Nature 620, 226–231 (2023).
Google Scholar