Strange IndiaStrange India


  • Lin, Q.-F. et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores. Science 374, 1605–1608 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science 379, 283–287 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris, R. E. Clicking zeolites together. Science 379, 236–237 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Inagaki, S., Yokoi, T., Kubota, Y. & Tatsumi, T. Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem. Commun. 48, 5188–5190 (2007).

    Article 

    Google Scholar 

  • Fan, W., Wu, P., Namba, S. & Tatsumi, T. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angew Chem. Int. Ed. 43, 236–240 (2004).

    Article 
    CAS 

    Google Scholar 

  • Smet, S. et al. Alternating copolymer of double four ring silicate and dimethyl silicone monomer–PSS-1. Chem. Eur. J. 23, 11286–11293 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, L. & Sun, J. Recent advances in the synthesis and application of two-dimensional zeolites. Adv. Energy Mater. 6, 1600441 (2016).

    Article 

    Google Scholar 

  • Shamzhy, M., Gil, B., Opanasenko, M., Roth, W. J. & Čejka, J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 11, 2366–2396 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dawson, D. M., Moran, R. F. & Ashbrook, S. E. An NMR crystallographic investigation of the relationships between the crystal structure and 29Si isotropic chemical shift in silica zeolites. J. Phys. Chem. C Nanomater. Interfaces 121, 15198–15210 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (Structure Commission of the International Zeolite Association, accessed 23 March 2023); http://www.iza-structure.org/databases/.

  • Zheng, N., Bu, X., Wang, B. & Feng, P. Microporous and photoluminescent chalcogenide zeolite analogs. Science 298, 2366–2369 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zicovich, C. M., Gándara, F., Monge, A. & Camblor, M. A. In situ transformation of TON silica zeolite into the less dense ITW: Structure-direction overcoming framework instability in the synthesis of SiO2 zeolites. J. Am. Chem. Soc. 132, 3461–3471 (2010).

    Article 

    Google Scholar 

  • Pophale, R., Cheeseman, P. A. & Deem, M. W. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13, 12407–12412 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eliášová, P. et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 44, 7177–7206 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J., Lin, C., Ma, T. & Sun, J. Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED. Nat. Commun. 13, 4016 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990).

    Article 
    CAS 

    Google Scholar 

  • Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    Article 
    CAS 

    Google Scholar 

  • Petricek, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

    Article 
    CAS 

    Google Scholar 

  • Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).

  • Deem, M. W., Pophale, R., Cheeseman, P. A. & Earl, D. J. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113, 21353–21360 (2009).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *