Lin, Q.-F. et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores. Science 374, 1605–1608 (2021).
Google Scholar
Li, J. et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science 379, 283–287 (2023).
Google Scholar
Morris, R. E. Clicking zeolites together. Science 379, 236–237 (2023).
Google Scholar
Inagaki, S., Yokoi, T., Kubota, Y. & Tatsumi, T. Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem. Commun. 48, 5188–5190 (2007).
Google Scholar
Fan, W., Wu, P., Namba, S. & Tatsumi, T. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angew Chem. Int. Ed. 43, 236–240 (2004).
Google Scholar
Smet, S. et al. Alternating copolymer of double four ring silicate and dimethyl silicone monomer–PSS-1. Chem. Eur. J. 23, 11286–11293 (2017).
Google Scholar
Xu, L. & Sun, J. Recent advances in the synthesis and application of two-dimensional zeolites. Adv. Energy Mater. 6, 1600441 (2016).
Google Scholar
Shamzhy, M., Gil, B., Opanasenko, M., Roth, W. J. & Čejka, J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 11, 2366–2396 (2021).
Google Scholar
Dawson, D. M., Moran, R. F. & Ashbrook, S. E. An NMR crystallographic investigation of the relationships between the crystal structure and 29Si isotropic chemical shift in silica zeolites. J. Phys. Chem. C Nanomater. Interfaces 121, 15198–15210 (2017).
Google Scholar
Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (Structure Commission of the International Zeolite Association, accessed 23 March 2023); http://www.iza-structure.org/databases/.
Zheng, N., Bu, X., Wang, B. & Feng, P. Microporous and photoluminescent chalcogenide zeolite analogs. Science 298, 2366–2369 (2002).
Google Scholar
Zicovich, C. M., Gándara, F., Monge, A. & Camblor, M. A. In situ transformation of TON silica zeolite into the less dense ITW: Structure-direction overcoming framework instability in the synthesis of SiO2 zeolites. J. Am. Chem. Soc. 132, 3461–3471 (2010).
Google Scholar
Pophale, R., Cheeseman, P. A. & Deem, M. W. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13, 12407–12412 (2011).
Google Scholar
Eliášová, P. et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 44, 7177–7206 (2015).
Google Scholar
Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).
Google Scholar
Li, J., Lin, C., Ma, T. & Sun, J. Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED. Nat. Commun. 13, 4016 (2022).
Google Scholar
Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990).
Google Scholar
Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).
Google Scholar
Petricek, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).
Google Scholar
Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).
Deem, M. W., Pophale, R., Cheeseman, P. A. & Earl, D. J. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113, 21353–21360 (2009).
Google Scholar