Strange IndiaStrange India


  • Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Google Scholar 

  • Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).

    ADS 

    Google Scholar 

  • Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ilderem, V. The technology underpinning 5G. Nat. Electron. 3, 5–6 (2020).

    Google Scholar 

  • Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, C. et al. Silicon integrated microwave photonic beamformer. Optica 7, 1162–1170 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Tao, Y. et al. Fully on-chip microwave photonic instantaneous frequency measurement system. Laser Photonics Rev., 16, 2200158 (2022).

  • Rahim, A. et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics 3, 024003 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Zhuang, L., Roeloffzen, C. G., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    ADS 

    Google Scholar 

  • Dong, J. et al. Compact, flexible and versatile photonic differentiator using silicon Mach–Zehnder interferometers. Opt. Express 21, 7014–7024 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Liu, W., Zhang, W. & Yao, J. Silicon-based integrated tunable fractional order photonic temporal differentiators. J. Lightwave Technol. 35, 2487–2493 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Microcomb-based photonic RF signal processing. IEEE Photonic Technol. Lett. 31, 1854–1857 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Minasian, R. A., Chan, E. & Yi, X. Microwave photonic signal processing. Opt. Express 21, 22918–22936 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, Y., Azaña, J. & Slavík, R. Ultrafast all-optical first-and higher-order differentiators based on interferometers. Opt. Lett. 32, 710–712 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, A. et al. Tunable fractional-order differentiator using an electrically tuned silicon-on-isolator Mach–Zehnder interferometer. Opt. Express 22, 18232–18237 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Ferrera, M. et al. On-chip CMOS-compatible all-optical integrator. Nat. Commun. 1, 29 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, M., Jeong, H.-S., Azaña, J. & Ahn, T.-J. 25-terahertz-bandwidth all-optical temporal differentiator. Opt. Express 20, 28273–28280 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Morton, P. A. et al. High-power, high-linearity, heterogeneously integrated III–V on Si MZI modulators for RF photonics systems. IEEE Photonics J. 11, 1–10 (2019).

    Google Scholar 

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, 4396 (2023).

    ADS 

    Google Scholar 

  • Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021).

    ADS 

    Google Scholar 

  • Zhang, Y. et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 10, 2380–2387 (2022).

    CAS 

    Google Scholar 

  • Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26, 14810–14816 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmed, A. N. R. et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett. 45, 1112–1115 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366–2373 (2022).

    Google Scholar 

  • Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Escalé, M. R., Pohl, D., Sergeyev, A. & Grange, R. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett. 43, 1515–1518 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett. 37, 084201 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M., Yu, F., Zhao, J., Zhang, L. & Li, Q. BEFD: boundary enhancement and feature denoising for vessel segmentation. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Martel, A. L. et al.) 775–785 (Springer, 2020).

  • Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).

    ADS 

    Google Scholar 

  • Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, S. et al. High-order all-optical differential equation solver based on microring resonators. Opt. Lett. 38, 3735–3738 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Pan, S. & Yao, J. UWB-over-fiber communications: modulation and transmission. J. Lightwave Technol. 28, 2445–2455 (2010).

    ADS 

    Google Scholar 

  • Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).

    ADS 

    Google Scholar 

  • Wen, H. et al. Few-mode fibre-optic microwave photonic links. Light: Sci. Appl. 6, 17021 (2017).

    Google Scholar 

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, K. et al. Surface acoustic wave stimulated Brillouin scattering in thin-film lithium niobate waveguides. Preprint at https://doi.org/10.48550/arXiv.2311.14697 (2023).

  • Rodrigues, C. C. et al. On-chip backward stimulated Brillouin scattering in lithium niobate waveguides. Preprint at https://doi.org/10.48550/arXiv.2311.18135 (2023).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Bajcsy, R. et al.) 770–778 (IEEE, 2016).

  • Chen, L., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proc. European Conference on Computer Vision (eds Ferrari, V. et al.) 801–818 (Springer, 2018).

  • Milletari, F., Navab, N. & Ahmadi, S. A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In Proc. International Conference on 3D Vision 565–571 (IEEE, 2016).

  • Codella, N. C. et al. Skin lesion analysis toward melanoma detection. In Proc. International Symposium on Biomedical Imaging 168–172 (IEEE, 2018).

  • Wang, B., de Lima, T. F., Shastri, B. J., Prucnal, P. R. & Huang, C. Multi-wavelength photonic neuromorphic computing for intra and interchannel distortion compensations in WDM optical communication systems. IEEE J. Sel. Top. Quantum Electron. 29, 7400212 (2022).

    Google Scholar 

  • Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    CAS 

    Google Scholar 

  • Huang, C. et al. High-capacity space-division multiplexing communications with silicon photonic blind source separation. J. Lightwave Technol. 40, 1617–1632 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Gao, J., Han, X., Lei, X. & Yu, Y. TEC power consumption in laser array packaging. Opt. Quantum Electron. 49, 1–13 (2017).

    Google Scholar 

  • Desurvire, E. & Zervas, M. N. Erbium-doped fiber amplifiers: principles and applications. Phys. Today 48, 56–58 (1995).

    Google Scholar 

  • Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo https://doi.org/10.5281/zenodo.10464317 (2024).

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo https://doi.org/10.5281/zenodo.10463902 (2024).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *