Mao, H.-K., Chen, X.-J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).
Google Scholar
Wang, D., Ding, Y. & Mao, H.-K. Future study of dense superconducting hydrides at high pressure. Materials 14, 7563 (2021).
Google Scholar
Lilia, B. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter 34, 183002 (2022).
Google Scholar
Zhang, F. & Oganov, A. R. Valence state and spin transitions of iron in Earth’s mantle silicates. Earth Planet. Sci. Lett. 249, 436–443 (2006).
Google Scholar
Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).
Google Scholar
Weck, G. et al. Evidence and stability field of FCC superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).
Google Scholar
Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).
Google Scholar
Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).
Google Scholar
Steele, L. G. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).
Google Scholar
Chen, W. et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 127, 117001 (2021).
Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Google Scholar
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Google Scholar
Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chinese Phys. Lett. 37, 107401 (2020).
Google Scholar
Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
Google Scholar
Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).
Google Scholar
Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).
Google Scholar
Semenok, D. V. et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties. Mater. Today 33, 36–44 (2020).
Google Scholar
Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, eaax6849 (2020).
Google Scholar
Semenok, D. V. et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 48, 18–28 (2021).
Google Scholar
Hong, F. et al. Possible superconductivity at ∼70 K in tin hydride SnHx under high pressure. Mater. Today Phys. 22, 100596 (2022).
Google Scholar
Chen, W. et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12. Nat. Commun. 12, 273 (2021).
Google Scholar
Ma, L. et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022).
Google Scholar
Li, Z. et al. Superconductivity above 200 K discovered in superhydrides of calcium. Nat. Commun. 13, 2863 (2022).
Google Scholar
He, X. et al. Superconductivity observed in tantalum polyhydride at high pressure. Chinese Phys. Lett. 40, 057404 (2023).
Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor?. Phys. Rev. Lett. 21, 1748–1749 (1968).
Google Scholar
Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
Google Scholar
Eremets, M. I. et al. High-temperature superconductivity in hydrides: experimental evidence and details. J. Supercond. Nov. Magn. 35, 965–977 (2022).
Google Scholar
Hirsch, J. E. & Marsiglio, F. Absence of magnetic evidence for superconductivity in hydrides under high pressure. Physica C Supercond. Appl. 584, 1353866 (2021).
Google Scholar
Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).
Google Scholar
Gavriliuk, A. G., Mironovich, A. A. & Struzhkin, V. V. Miniature diamond anvil cell for broad range of high pressure measurements. Rev. Sci. Instrum. 80, 043906 (2009).
Google Scholar
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Google Scholar
Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).
Google Scholar
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Google Scholar
Dolde, F. et al. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).
Google Scholar
Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).
Google Scholar
Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV− center under pressure. Phys. Rev. Lett. 112, 047601 (2014).
Google Scholar
Barson, M. S. J. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).
Google Scholar
Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).
Google Scholar
Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers under megabar pressures. Chinese Phys. Lett. 39, 117601 (2022).
Google Scholar
Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).
Goldman, M. L. et al. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B 91, 165201 (2015).
Google Scholar
Davies, G. & Hamer, M. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. Lond. A Math. Phys. Sci. 348, 285–298 (1976).
Google Scholar
Nusran, N. et al. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J. Phys. 20, 043010 (2018).
Google Scholar
Tinkham, M. Introduction to Superconductivity (Courier, 2004).
Minkov, V. S., Ksenofontov, V., Bud’ko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat. Phys. 19, 1293–1300 (2023).
Google Scholar
Matsushita, T. et al. Flux Pinning in Superconductors, Vol. 164 (Springer, 2007).
Xu, Y., Zhang, W. & Tian, C. Recent advances on applications of NV− magnetometry in condensed matter physics. Photon. Res. 11, 393–412 (2023).
Huang, X. et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Natl Sci. Rev. 6, 713–718 (2019).
Google Scholar
Struzhkin, V. et al. Superconductivity in La and Y hydrides: remaining questions to experiment and theory. Matter Radiat. Extrem. 5, 028201 (2020).
Google Scholar
Focke, A. B. The principal magnetic susceptibilities of bismuth single crystals. Phys. Rev. 36, 319–325 (1930).
Google Scholar
Minkov, V. S. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 13, 3194 (2022).
Google Scholar