Strange IndiaStrange India


  • Mao, H.-K., Chen, X.-J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Wang, D., Ding, Y. & Mao, H.-K. Future study of dense superconducting hydrides at high pressure. Materials 14, 7563 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lilia, B. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter 34, 183002 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, F. & Oganov, A. R. Valence state and spin transitions of iron in Earth’s mantle silicates. Earth Planet. Sci. Lett. 249, 436–443 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Weck, G. et al. Evidence and stability field of FCC superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Steele, L. G. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).

    ADS 

    Google Scholar 

  • Chen, W. et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 127, 117001 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chinese Phys. Lett. 37, 107401 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).

    CAS 

    Google Scholar 

  • Semenok, D. V. et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties. Mater. Today 33, 36–44 (2020).

    CAS 

    Google Scholar 

  • Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, eaax6849 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semenok, D. V. et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 48, 18–28 (2021).

    CAS 

    Google Scholar 

  • Hong, F. et al. Possible superconductivity at 70 K in tin hydride SnHx under high pressure. Mater. Today Phys. 22, 100596 (2022).

    CAS 

    Google Scholar 

  • Chen, W. et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12. Nat. Commun. 12, 273 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L. et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Superconductivity above 200 K discovered in superhydrides of calcium. Nat. Commun. 13, 2863 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, X. et al. Superconductivity observed in tantalum polyhydride at high pressure. Chinese Phys. Lett. 40, 057404 (2023).

  • Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor?. Phys. Rev. Lett. 21, 1748–1749 (1968).

    ADS 
    CAS 

    Google Scholar 

  • Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eremets, M. I. et al. High-temperature superconductivity in hydrides: experimental evidence and details. J. Supercond. Nov. Magn. 35, 965–977 (2022).

    CAS 

    Google Scholar 

  • Hirsch, J. E. & Marsiglio, F. Absence of magnetic evidence for superconductivity in hydrides under high pressure. Physica C Supercond. Appl. 584, 1353866 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gavriliuk, A. G., Mironovich, A. A. & Struzhkin, V. V. Miniature diamond anvil cell for broad range of high pressure measurements. Rev. Sci. Instrum. 80, 043906 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dolde, F. et al. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).

    CAS 

    Google Scholar 

  • Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NV center under pressure. Phys. Rev. Lett. 112, 047601 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Barson, M. S. J. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers under megabar pressures. Chinese Phys. Lett. 39, 117601 (2022).

    ADS 

    Google Scholar 

  • Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

  • Goldman, M. L. et al. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B 91, 165201 (2015).

    ADS 

    Google Scholar 

  • Davies, G. & Hamer, M. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. Lond. A Math. Phys. Sci. 348, 285–298 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Nusran, N. et al. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J. Phys. 20, 043010 (2018).

    ADS 

    Google Scholar 

  • Tinkham, M. Introduction to Superconductivity (Courier, 2004).

  • Minkov, V. S., Ksenofontov, V., Bud’ko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat. Phys. 19, 1293–1300 (2023).

    CAS 

    Google Scholar 

  • Matsushita, T. et al. Flux Pinning in Superconductors, Vol. 164 (Springer, 2007).

  • Xu, Y., Zhang, W. & Tian, C. Recent advances on applications of NV magnetometry in condensed matter physics. Photon. Res. 11, 393–412 (2023).

    Google Scholar 

  • Huang, X. et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Natl Sci. Rev. 6, 713–718 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Struzhkin, V. et al. Superconductivity in La and Y hydrides: remaining questions to experiment and theory. Matter Radiat. Extrem. 5, 028201 (2020).

    CAS 

    Google Scholar 

  • Focke, A. B. The principal magnetic susceptibilities of bismuth single crystals. Phys. Rev. 36, 319–325 (1930).

    ADS 
    CAS 

    Google Scholar 

  • Minkov, V. S. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 13, 3194 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *